
Implementation and comparison of
pathfinding algorithms in a dynamic 3D space

Bachelor Thesis
for attainment of the academic degree of B.Sc.

Carina Krafft
2269579

University of Applied Sciences Hamburg
Faculty of Design, Media and Information
Department Media Technology

First Examiner: Prof. Dr.-Ing. Sabine Schumann

Second Examiner: Prof. Dr. Edmund Weitz

Hamburg, 18.03.2019

Thema der Arbeit

Implementierung und Vergleich von Pfadfinde-Algorithmen im dynamischen 3D-Raum.

Schlüsselwörter

Dynamischer 3D-Raum, Computerspiel, Gegner UFO, A*/ARA* (Anytime Algorithmen),
D*/D* Lite (dynamische Algorithmen), AD*

Kurzzusammenfassung

Diese Arbeit konzentriert sich darauf, einen geeigneten Pfadfinde-Algorithmus für dynamische
3-dimensionale Spielumgebungen zu finden, die zum Beispiel für UFOs in Weltraum-Spielen
verwendet werden können. Hierfür werden verschiedene Pfadfinde-Algorithmen vorgestellt,
implementiert und ihre Ergebnisse verglichen. Die Hauptaufgabe hierbei ist einen Pfadfinde-
Algorithmus zu finden, welcher in einer dynamischen Umgebung gute Leistungen erzielt.

Topic of the bachelor’s thesis

Implementation and comparison of pathfinding-algorithms in a dynamic 3D-space.

Keywords

Dynamic 3D-space, computer game, enemy UFO, A*/ARA* (anytime algorithms), D*/D* Lite
(dynamic algorithms), AD*

Abstract

This bachelor thesis focuses on finding a suitable pathfinding algorithm for dynamic 3-dimensional
game environments, to be used for example as UFO AI’s in space-themed games. For this purpose
different pathfinding algorithms will be introduced, implemented, and their results compared.
The main focus hereby lays on finding a pathfinding algorithm, which performs well in a highly
dynamic game environment.

ii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis goal . 2
1.3 Structure . 3

2 Foundation 4
2.1 Lost in Space . 4
2.2 Pathfinding algorithms . 7

2.2.1 A* . 7
2.2.2 ARA* . 10
2.2.3 Theta* . 12
2.2.4 D* . 14
2.2.5 D* Lite . 16
2.2.6 Field D* . 19
2.2.7 AD* . 23
2.2.8 Conclusion . 26

2.3 Currently used systems . 27
2.3.1 Pathfinding in games . 27
2.3.2 Navigation system in Unity . 28
2.3.3 Path Finder 3D . 31

3 Concept 32
3.1 Development and testing environment . 32
3.2 Proceeding . 32
3.3 Comparison . 33
3.4 Additional considerations . 34
3.5 Expected results . 34

4 Implementation 35
4.1 Test environment . 35

4.1.1 Lost in Space . 35
4.1.2 Abstract test environment . 38

4.2 Search graph . 40
4.2.1 Cell-grid . 40
4.2.2 Waypoints . 43
4.2.3 Conclusion . 49

iii

4.3 Pathfinding algorithms . 50
4.3.1 General implementation . 50

4.3.1.1 Multi-threading . 50
4.3.1.2 Open, closed, and incons list . 52
4.3.1.3 Heuristic . 54

4.3.2 A*-based . 55
4.3.2.1 A* . 55
4.3.2.2 ARA* . 56
4.3.2.3 Theta* . 57

4.3.3 D*-based . 59
4.3.3.1 D* Lite . 60
4.3.3.2 AD* . 62

4.4 Overall process of dynamic pathfinding . 63
4.4.1 Updating the search graph . 63
4.4.2 Recalculating the path . 65
4.4.3 Determine start and goal node . 65
4.4.4 Movement of the AI . 68

5 Comparison 70
5.1 Static AI and destination . 70
5.2 Fully dynamic . 73

6 Conclusion 79
6.1 Summary . 79
6.2 Conclusion . 80
6.3 Remaining issues . 81
6.4 Looking ahead . 81

Bibliography 83

Appendix 88

iv

List of Figures

1 Lost in Space VR 2D top-down view . 5
2 Lost in Space 2D top-down view . 6
3 Consistent heuristic [Wel12] . 8
4 Structure of A* algorithm [Cho10] . 9
5 Example of A* algorithm [Cho10, Cod12] . 9
6 Structure of ARA* [LGT03b] . 11
7 A* path vs any-angle path [DN+10] . 12
8 Paths considered by Basic Theta* [DN+10] . 12
9 Example of Basic Theta* [DN+10] . 13
10 Basic structure of D* algorithm [Ste94] . 15
11 Structure of PROCESS-STATE function [Ste94] 16
12 Concept of successor and predecessor [Cho10] . 17
13 Structure of D* Lite [KL02c] . 18
14 Layout of Nodes [FS05] . 19
15 Shortest path of n through edge ~n1n2 [FS05] . 20
16 ComputeCost-function of Field D* [FS05] . 22
17 UpdateState-function of AD* [LF+05] . 24
18 Structure of AD* [LF+05] . 25
19 Navigation in Left 4 Dead [Boo09] . 27
20 Unity’s Navigation System [Uni18d] . 29
21 Global and Local Navigation [Uni18a] . 30
22 Local obstacle avoidance (left) and carving (right) [Uni18a] 30
23 Pathfinding with PathFinder 3D [Gra18] . 31

24 Spawn asteroids in circles (top-down) . 37
25 Spawn asteroids in flattened sphere (top-down) 37
26 Spawn asteroids in circles (side-view) . 37
27 Spawn asteroids in flattened sphere (side-view) 38
28 Abstract test environment . 39
29 Part of cell-grid (orthographic front view) . 41
30 Part of cell-gird (angled view) . 41
31 Neighbours in 3-dimensional cell-grid . 41
32 Cell-gird with blocked and free cells . 42
33 Cube with box collider . 44
34 Asteroid with convex mesh collider . 44

v

35 Cube with waypoints . 45
36 Asteroid with waypoints . 45
37 Cube with additional waypoints . 45
38 Direct neighbours on cube . 46
39 Direct neighbours on asteroid . 46
40 Test environment with all waypoint-connections (angled-view) 47
41 Test environment with all waypoints and connections (front-view) 48
42 A* corridor (top: cell-grid; bottom: waypoints) 56
43 ARA* corridor (cell-gird) . 57
44 Theta* corridor (cell-grid) . 59
45 D* Lite with ε = 2 corridor (gell-grid) . 61
46 D* Lite with ε = 2 (cell-gird) . 61
47 AD* corridor (cell-grid) . 62

48 Comparison of path length, expanded nodes, and computation time in a cell-grid
and waypoint-based search graph . 71

49 Comparison of success rate in cell-grid and waypoint-based search graph 74
50 Comparison of computation time and search graph update time 75
51 Distance travelled in a cell-grid search graph . 76
52 Total number of expanded nodes and total computation time in a cell-grid search

graph . 76
53 Total number of expanded nodes in a cell-grid search graph with static destination 77

54 Example of D* Lite with no heuristic [Cho10] . 88
55 Full example of D* Lite with no heuristic [Cho10] 89
56 Full cell-grid (orthographic front view) . 90
57 Full cell-grid with connections to neighbours indicated in yellow (orthographic

front view) . 90
58 Average path length utilizing a cell-grid search graph 91
59 Average expanded nodes utilizing a cell-grid search graph 91
60 Average computation time utilizing a cell-grid search graph 91
61 Average path length utilizing a waypoint-based search graph 92
62 Average expanded nodes utilizing a waypoint-based search graph 92
63 Average computation time utilizing a waypoint-based search graph 92
64 Success rate in an all dynamic environment utilizing a cell-grid search graph . . . 93
65 Success rate in an all dynamic environment utilizing a waypoint-based search graph 93
66 Average distance travelled by the AI in an all dynamic environment utilizing a

cell-grid search graph . 94

vi

67 Average total expanded nodes in an all dynamic environment utilizing a cell-grid
search graph . 94

68 Average total computation time in an all dynamic environment utilizing a cell-grid
search graph . 94

69 Distance travelled by the AI in an all dynamic environment utilizing a cell-grid
search graph . 95

70 Expanded nodes in an all dynamic environment utilizing a cell-grid search graph 95
71 Computation time in an all dynamic environment utilizing a cell-grid search graph 95
72 Average distance travelled by the AI in an all dynamic environment utilizing a

waypoint search graph . 96
73 Average total expanded nodes in an all dynamic environment utilizing a waypoint-based

search graph . 96
74 Average total computation time in an all dynamic environment utilizing a waypoint-based

search graph . 96
75 Distance travelled by the AI in an all dynamic environment utilizing a waypoint-based

search graph . 97
76 Expanded nodes in an all dynamic environment utilizing a waypoint-based search

graph . 97
77 Computation time in an all dynamic environment utilizing a waypoint-based

search graph . 97

vii

List of Abbreviations

AI Artificial Intelligence

VR Virtual Reality

UFO Unidentified Flying Object

API Application Programming Interface

viii

1 Introduction

1.1 Motivation
“Pathfinding-algorithms”: For most people not affine to computers its a terribly scientific
sounding term. In reality, though, they are nothing to be afraid of. Quite in the contrary -
most of us use them every day without even thinking about it.

Most people immediately think of technology when hearing the word “pathfinding-algorithm”.
They are not entirely wrong. Pathfinding algorithms are used in a wide variety of modern
technologies. The most commonly known application is probably the navigation system. But
the use of pathfinding algorithms stretches far beyond that. Whether it is routing information
through networks, directing enemy AI’s1 in video games, or steering autonomous driving vehicles
- researches and developments of new and improved pathfinding algorithms are made in a wide
variety of fields.

To fully understand the potential of pathfinding it is worth while taking a step back and looking
away from technology for a moment. Pathfinding starts with simple, human tasks, such as
getting to work each morning. Commuting in larger cities, there are several routes and several
means of transportation to choose from. Some take longer, some are more crowded, some are
more demanding, and so on. Depending on our current mood or situation we regard each
attributes, such as time, crowds, activeness, with different significance and then choose the path
avoiding most of the unwanted attribute. In a way we perform a pathfinding algorithm. Mostly
we are not aware of this process, though. We do not spend hours processing all the data or
actively running complex algorithms in our mind. We just “know” what path to take.

Humans are able to process large amounts of data and make a decision based upon them in
split-seconds. Looking at a simple map with a marked starting and ending point we intuitively
know the fastest way from start to finish. Admittedly in this regard one might say that nowadays
computers can make this decision as fast as humans. Our real superiority over computers
becomes obvious, though, when being confronted with a dynamic environment. When facts
change, we can adjust our perception quickly and adapt to the new circumstances.

A computer has not got this luxury. Even though great progress has been made and by now
most computers are better at static pathfinding than humans, the challenge of finding paths in
dynamic environments remains.

Since high interactivity in computer games often leads to highly dynamic games, they are an
1AI: Artificial Intelligence

1

Introduction

excellent use case for pathfinding algorithms in dynamic environments. One example is the
formerly developed space themed 3-dimensional game “Lost in Space VR”, which was the initial
inspiration for this bachelor’s thesis. In “Lost in Space VR” the player has to safely fly a UFO
through an asteroid field, by avoiding or shooting asteroids. During the development of this
game the idea was to implement enemies that would try to catch the player, whilst avoiding
asteroids on their path. For this, they would need to use a navigation system capable of finding
the shortest path from their current position to the player. Since, throughout the whole game,
the player and the asteroids are moving constantly, this pathfinding system would have to
perform well in a highly dynamic 3-dimensional environment. At the time “Lost in Space VR”
was developed, time constraints did not allow for developing a custom solution for the enemies’
navigation system. Also, no off-the-shelf solution for a task with these specific requirements
was available. Therefore, no enemy system was implemented and the task of finding a suitable
pathfinding algorithm for dynamic 3-dimensional game environments was postponed until this
bachelor’s thesis.

1.2 Thesis goal
This bachelor’s thesis will expand on the topic of pathfinding, especially in dynamic environments,
by implementing a suitable pathfinding and navigation system in a dynamic 3-dimensional game
environment.

To find the most suitable pathfinding algorithm for this task, a selection of algorithms will be
introduced, implemented, and their results compared. Primarily an abstract game environment
will be used for implementation and testing, so the complete game environment can be controlled.
The ultimate goal, though, is for results to be tested in a space-themed game setting similar to
“Lost in Space VR”. Furthermore, close attention will be paid to creating results transferrable
to other game settings.

Please note that over the course of this bachelor’s thesis only a selection of pathfinding algorithms
will be addressed. To address all possible pathfinding algorithms, would go beyond the scope of
this thesis. Moreover, previously developed game mechanics and assets will be used and there
is no focus on extending or balancing gameplay.

2

Introduction

1.3 Structure
The aim of this thesis is to identify which algorithm is most suitable to be implemented in the
highly dynamic game environment of “Lost in Space”. For this, multiple pathfinding algorithm
will be implemented and compared.

After having laid out the motivation of this thesis, in chapter two (2) the game “Lost in Space”
is introduced (2.1). Also, the pathfinding algorithms A*, ARA*, Theta*, D*, D* Lite, Field
D*, and AD* are explained on a theoretical level (2.2). Chapter two concludes by giving an
overview of already existent and commonly used pathfinding systems in games and especially
those available for the game engine Unity (2.3).

The thesis then continues by drafting a concept for the project execution in chapter three (3).
Here also the abstract test environment, which will be used for implementation and testing of
the algorithms A*, ARA*, Theta*, D* Lite, and AD*, is introduced (3.1), as well as the setup
of the search graph (3.2).

Chapter four (4) starts by describing the implementation of the game “Lost in Space” (4.1.1)
and the setup of the abstract test environment (4.1.2), followed by the development of the
cell-grid and waypoint-based search graph (4.2). Once the search graph options are set up, the
implementation of the pathfinding algorithms is presented (4.3). First overall implementation
decisions are discussed, including the use of a background thread, the design of the open, closed,
and incons list, and the chosen focussing heuristic. Afterwards the implementation process
of each algorithm individually is briefly discussed. Chapter four concludes by describing the
overall process of the pathfinding system adapting to changes in a dynamic game environment
(4.4). This includes the update of the search graph, the pathfinding algorithm managing and
adapting to changes in the search graph, determining new start and goal nodes, and moving the
AI through the dynamic game environment.

Lastly all algorithms are tested and compared in chapter five (5). Comparison is done in two
steps, mainly comparing each algorithms path length, number of expanded nodes, time required
for computation, and the success rate of the AI reaching its destination.

Chapter six concludes this thesis (6). It gives a summary of the thesis (6.1), draws conclusions
from experiences made throughout the implementation process and by comparing the algorithms
(6.2), names remaining issues and flaws (6.3), and gives a look ahead of possible optimizations
for the pathfinding system (6.4).

3

2 Foundation

The following chapter will start by introducing the game “Lost in Space”, which presents a
highly dynamic 3-dimensional game environment and thereby is an interesting use-case to test
the results of this bachelor’s thesis. It will then present a selection of A*-based and D*-based
pathfinding algorithms and proceed to give an overview of current standards in pathfinding
methods used in games. The chapter will conclude with the introduction of a couple of tools
used to implement pathfinding in the Unity game engine.

2.1 Lost in Space
The game used for testing the results of this bachelor’s thesis will be called “Lost in Space”
and is based on the formerly developed project “Lost in Space VR”. As the name suggests,
“Lost in Space VR” was a VR2 -game developed by a group of students, including the author
of this bachelor’s thesis, as part of the course “Virtual Systems” at the University of Applied
Sciences Hamburg. The goal of this game was to make the players feel as if they were flying. To
achieve this, they were standing on a custom-made balancing board functioning as a controller
to steer a UFO through an asteroid field. Additionally, the player could choose between two
weapons to destroy asteroids. A gameplay trailer of the game can be found here: https://

www.youtube.com/watch?time_continue=3&v=uhm9h2Gmv98

Since the focus during the development of “Lost in Space VR” was set on implementing the main
gameplay aspects, such as flying and shooting, as well as the VR-application, time constraints did
not allow for implementing an enemy system. Implementing a basic enemy in this game would be
an interesting use-case for testing the results of this bachelor’s thesis, though. The enemies’ AI
would have the task to try to catch the player, whilst avoiding collision with asteroids. Thereby
conclusions drawn from this bachelor’s thesis can be tested in a realistic game environment.

Since “Lost in Space VR” requires specific hardware such as VR-glasses and a custom controller,
a new version of the game will be developed, called “Lost in Space”. It will differ from the
previous version in the way, that it will no longer be in VR. Thus, steering the player will be
done via keyboard or controller input. Due to the previous use of a custom controller the player
was limited to steering left and right and its UFO moving on an orbit around the centre of the
field. To simulate the sideward movement, the UFO moves in the according direction on the
orbit. With the orbit being wide enough, this feels like moving to the left and right. To simulate
the forward movement of the player’s UFO, the asteroids move towards the centre of the game

2VR: Virtual Reality

4

https://www.youtube.com/watch?time_continue=3&v=uhm9h2Gmv98
https://www.youtube.com/watch?time_continue=3&v=uhm9h2Gmv98

Foundation

field. If enemies had been implemented in this version, they would have started at a certain
distance to the player and moved towards them.

Figure 1 indicates the movement of all game components with arrows. Due to the player only
moving horizontally on the given orbit, no vertical movement of any game components was
required, limiting all movements to two dimensions.

Figure 1: Lost in Space VR 2D top-down view

Removing the constraints of VR and the custom controller, in “Lost in Space” players can have
a lot more freedom in their movement. In addition to steering left and right, they can now also
steer up and down. This results in the player moving freely in all three dimensions through the
game field, no longer constrained to an orbit. This additional freedom does not only affect the
player’s movement, but also all other game components’, especially the asteroids’. Therefore,
their concept of initiation and movement has to be reconsidered and changed accordingly.

Most importantly, the asteroids’ movement towards the centre of the game field to simulate the
player’s forward movement is no longer required. Therefore, they can now move in seemingly
random directions throughout space. To limit the number of asteroids needed in the game
scene, they can only exist within a certain radius around the player, forming a sphere around
it. Enemies will spawn at the rim of this sphere and move towards the player.

Figure 2 indicates the movement of all game components using arrows. Thereby it only shows
the game from a 2D top-down view. In the real game the enemy has to be able to pass asteroids
from all angles, meaning not only left and right, but also above or beneath. Looking at this
figure it can be seen clearly, that almost all game components are moving constantly. Therefore,
the requirement for a suitable enemy pathfinding is, that it has to perform well in this highly
dynamic 3-dimensional game environment.

5

Foundation

Figure 2: Lost in Space 2D top-down view

6

Foundation

2.2 Pathfinding algorithms
In this chapter a selection of pathfinding algorithms will be presented. Since the task of this
bachelor’s thesis is the implementation of a suitable pathfinding system in a dynamic computer
game, these algorithms were chosen for a few important characteristics, such as being efficient,
being able to react to dynamic environments, or not restricting movement to grid edges.

Throughout this bachelor’s thesis following notation will be used:

n: “node”, state

nstart: start node

ngoal: goal node

c(n1, n2): arc cost of moving from n1 to n2

b(n2) = n1: backpointer of node n2 is node n1; n1 is parent of n2

2.2.1 A*

The A* (pronounced “A star”) search algorithm was first published in 1968 [HNR68]. It was
developed by computer scientists Peter Hart, Nils Nilsson and Bertram Raphael at the Stanford
Research Institute, now SRI International, as part of their work on “Shakey the Robot” [Com19].

A* can be seen as a generalization and extension of the Dijkstra algorithm, and belongs to the
class of the informed search-algorithms. It uses estimation functions, called heuristics, to focus
its search and thereby enhance its performance. A* is widely used as a pathfinding algorithm
to find the optimal path between two points, called nodes. [Mar15]

The A* algorithm uses the evaluation function f(n) to estimate the total cost of the path going
through n to the goal.

f(n) = g(n) + h(n)

Hereby g(n) is the actual cost of the path from the start node to n, and h(n) is the heuristic
function, which means it is the estimated lowest cost from n to the goal node [Wel12]. A heuristic
is called admissible, if it never overestimates the actual path cost. Additionally, a heuristic is
consistent (or monotone), if its estimated cost to the goal is always less or equal to the cost
of travelling to any neighbouring node plus the neighbouring nodes’ estimated cost to the goal
(see Figure 3) [Mar15].

7

Foundation

Figure 3: Consistent heuristic [Wel12]

An important concept of the A* algorithm is the use of an open list and a closed list. The
open list, in some literature also called “fringe” [Wik18b] , “fringe list” [Mne18] , or “open set”
[Wik18a], contains a list of nodes that are children of already expanded nodes, but have not
been expanded themselves, yet. The closed list, also known as “closed set” [Wik18b], contains
all nodes that have already been processed [Cho10].

Meeting some additional criteria, the A* algorithm is proven to be complete, optimal, and
optimal efficient.

Complete: If a solution exists, it will be found [Mar15].

Optimal: If the heuristic is consistent, the solution found will be the optimal one
[Mar15]. In cases where no closed list is used, an admissible heuristic is
sufficient for optimality [Wel12].

Optimal efficient: Using the same heuristic, no other algorithm can find the solution
expanding less nodes [Mar15].

The time complexity of A* is strongly dependent on the used heuristic. In the worst case it is
O(bd), where b is the branching factor and d the depth of the solution. [Mar15, Wik18b]

8

Foundation

The following graphs demonstrate the structure of the A* algorithm.

Figure 4: Structure of A* algorithm [Cho10]

Figure 5: Example of A* algorithm [Cho10, Cod12]

9

Foundation

2.2.2 ARA*

The ARA* (Anytime Repairing A*) algorithm was presented in 2003 by Maxim Likhachev,
Geoff Gordon and Sebastian Thrun [LGT03a]. The authors state:

“[ARA*] is an efficient anytime heuristic search that [. . .] runs A* with inflated
heuristic in succession [and] reuses search efforts from previous executions in such a
way that the sub-optimality bounds are still satisfied.” [LGT03b, p. 2]

This statement names a number of characteristics.
For one it says that ARA* is an anytime algorithm. Anytime algorithms are algorithms, which
can return valid solutions, even if they are interrupted before ending. In general, they quickly
compute a sub-optimal solution and improve its accuracy over time. Thereby they provide a
trade-off between computation time and the quality of the solution. [DB88]

The other important characteristic is the use of the A* algorithms with an inflated heuristic.
As described in 2.2.1 A* is optimal given it uses a consistent heuristic h(n). Inflating this
heuristic by a factor ε > 1 mostly helps directing the search and thereby saves time by expanding
fewer nodes. [Lik10] The algorithm now uses:

f(n) = g(n) + ε ∗ h(n)

Using an inflated heuristic, the found solution is not guaranteed to be optimal, but might be
sub-optimal. The sub-optimality however is bound by the factor ε. This means the cost of
the sub-optimal solution is less or equal to the cost of the optimal solution. [LGT03b]

The third important characteristic mentioned is the reuse of search efforts. In other words,
instead of running the algorithm from scratch for each execution cycle, it stores previously gained
information. ARA* does this by using a third list, called incons (original notation: “INCONS”
[LGT03b]) in addition to the open list and closed list, known from classical A*. Nodes are called
locally inconsistent after their g-value has been decreased and before they are expanded the
next time. In consequence all nodes in the open list are locally inconsistent. If a node’s g-value
is lowered, it is put into the open list, until it is expanded and thereafter put into the closed list.
Since every node can only be expanded once per execution cycle, the open list only contains
all locally inconsistent nodes, that have not been expanded, yet. Nodes, that become locally
inconsistent, but have already been expanded previously, are put into the incons list. [LGT03b]

The sub-optimality bound ε’ is calculated as the minimum between ε and the ratio between
f(nstart) and the lowest non-weighted f -value of all locally inconsistent nodes [LGT03b]:

ε′ = min(ε,
f(goal)

minn∈O∪I(g(n) + h(n))
)

10

Foundation

The following graph illustrates the structure of the ARA* pathfinding algorithm.

Figure 6: Structure of ARA* [LGT03b]

11

Foundation

2.2.3 Theta*

Theta* is an any-angle path-planning algorithm, introduced 2007 by Kenny Daniel, Alex Nash,
Sven Koenig, and Ariel Felner [DN+07]. The authors refer to Theta* as a collective of Basic
Theta* and Angle-Propagation Theta*.

As the name suggests any-angle pathfinding algorithms allow their paths to head in any angle.
For the Theta* algorithms this means, that even though they are based on A* and therefore
propagate information along grid edges, unlike A*, they do not constrain their paths to those
grid edges. Allowing the path to deviate from the grid allows for finding shorter and more
natural looking paths (see Figure 7). [DN+10]

Figure 7: A* path vs any-angle path [DN+10]

Basic Theta* is almost identical to A* and only differs in updating the g-value and parent
of unexpanded neighbouring nodes n′ of n, during expansion of n. A* only considers the path
along the grid edges from nstart to n, and from n to n′ (see Figure 8 path, path 1) [DN+07]:

g(n′) = g(n) + c(n, n′)

Basic Theta* additionally considers the path from nstart to the parent of n, parent(n), and from
the parent of n to n′ in a straight line (see Figure 8, path 2) [DN+07]:

g(n′) = g(parent(n) + c(parent(n), n′)

Figure 8: Paths considered by Basic Theta* [DN+10]

12

Foundation

Path 2 is always shorter than path 1 and will be chosen from Theta* if it is not blocked. In
other words, when there is a line-of-sight between n′ and parent(n) (Figure 8, left). Otherwise
path 1 will be chosen (Figure 8, right).

The following graphic shows an example trace of Basic Theta*. For simplicity non-relevant
extractions of nodes are not shown. The red circles indicate which node is currently being
extracted.

Figure 9: Example of Basic Theta* [DN+10]

Basic Theta* is correct and complete, but not optimal. This means that if there is an unblocked
path it will be found and any path that is found is unblocked, but a found solution is not
guaranteed to be the shortest one [DN+10]. Experiments have shown, though, that Basic Theta*
finds the shortest path in a large percentage of cases. [Nas10]

Angle-Propagation Theta* (AP Theta*) differs from Basic Theta* only in the fact, that it
propagates angle ranges and thereby determines whether two nodes have a line-of-sight, without
running a line-of-sight check. In doing so AP Theta* improves the worst-case complexity of
Basic Theta* significantly. Experiments have shown, though, that overall AP Theta* is slower
and finds slightly longer paths than Basic Theta* [DN+10]. Therefore, it will not be considered
in this bachelor’s thesis. For further information on AP Theta* see [DN+10] chapter six.

13

Foundation

2.2.4 D*

The D* pathfinding algorithm was first published in 1993 by Anthony Stentz. It was originally
developed for the field of robotics and is a complete and optimal pathfinding algorithm, which
is capable of finding paths in unknown, partially known, or dynamic environments. It is able to
do so because of its capability to react to changes in arc path costs c(n, n′). Reacting to those
changes, it updates its found path by reusing previously established data. D* closely resembles
A*, except that it is dynamic - hence the name D*. [Ste93]

Unlike the A*-based algorithms presented in previous chapters of this thesis, D* is directed
backwards. In other words, it starts its information propagation at the goal node and stops
when the position of the robot, the start node, is reached or the open list is empty. Doing so,
D* uses the path cost function h(n). Note, that h is not a heuristic, but the sum of path costs
from n to the goal, comparable to g(n) in the A* algorithm. [Ste94]

Like A*, D* utilises an open list and a closed list. To identify which list each node is in, they
are each associated with a tag t(n), which can take the values NEW, if n has never been on
the open list, OPEN, or CLOSED. Nodes on the open list, t(n) = OPEN, are sorted using their
key function values k(n). For each node n in the open list the key value function is defined as
the minimum of h(n) before modification, and the smallest value of h(n), since n was placed on
the open list. In practice this means k(n) is determined as followed when n is being placed or
replaced in the open list [Ste94]:

k(n) =

hnew, if t(n) = NEW

min(k(n), hnew), if t(n) = OPEN

min(h(n), hnew), if t(n) = CLOSED

This key function is an important aspect of the D* algorithm. First of all, each node in the
open list is classified by its key function as either a raise state, given k(n) < h(n), or a lower
state, given k(n) = h(n). Raise states propagate information about path cost increases,
lower states propagate information about path cost decreases. Moreover, the parameter kmin

is defined as the lowest key function value of all nodes in the open list:

kmin = min(k(n)), with t(n) = OPEN

Path costs lower or equal to kmin are optimal, whereas path costs greater than kmin are not
guaranteed to be optimal. Lastly kold is defined as kmin, prior to the last removal of a node from
the open list [Ste94]

14

Foundation

As defined by the author the most important functions of the D* algorithms are:
PROCESS-STATE and MODIFY-COST [Ste94] . PROCESS-STATE determines the optimal
path costs to the goal and MODIFY-COST reacts to changes in the arc costs c(n, n′) by updating
the arc cost function and placing all affected nodes into the open list. [Ste93]

The following graphs shows the structure of the D* algorithm. Figure 10 illustrates the basic
structure of the algorithm and Figure 11 shows a more detailed view of the PROCESS-STATE
function. For an example of the D* algorithms have a look at [Cho10] page 38.

Figure 10: Basic structure of D* algorithm [Ste94]

15

Foundation

Figure 11: Structure of PROCESS-STATE function [Ste94]

2.2.5 D* Lite

D* Lite is an incremental heuristic search algorithm first introduced by Sven Koenig and Maxim
Likhachev in 2002 [KL02c]. Both of those names should sound familiar. Sven Koenig is a
co-developer of the Theta* algorithm, and Maxim Likachev was involved in the development of
the ARA* algorithm.

16

Foundation

Since D* Lite is an incremental heuristic search, it not only uses heuristics to focus its search,
but it also reuses information gained from previous searches to find a solution faster. D* Lite
was built upon Lifelong Planning A* (LPA*) [KL02a], a pathfinding algorithm developed by
Koenig and Likhachev earlier. Moreover, D* Lite uses the same navigation strategy as D* but
is generally simpler and shorter than D*. Therefore, it is easily extendable for implementing
optimizations, such as inadmissible heuristics. [KL02c]

Before the D* Lite algorithm can be explained, the terminology of successor and predecessor
has to be clarified. Given a directed edge from n to n′, it is said that n′ is the successor of n
and n is the predecessor of n′. The cost of this edge is denoted with c(n, n′). [Cho10]

Figure 12: Concept of successor and predecessor [Cho10]

D* Lite contains two cost variables for each node n. One is the g-value g(n), which is an
estimated path cost from the goal to n. Estimated in the sense, that the g(n) might change
when a shorter path is found. The other one is the rhs-value rhs(n), which is a one-step
lookahead of the path cost and is based on the g-values of its successors. Therefore, it is
potentially better informed than g(n). [KL02c]

rhs(n) = minn′∈Succ(n)(g(n′) + c(n, n′) [Cho10]

The g- and rhs-values determine whether a node is consistent or not. If g(n) = rhs(n), then
a node is consistent, otherwise it is said to be inconsistent. Furthermore, if g(n) > rhs(n),
it is said n is over-consistent, whereas if g(n) < rhs(n) then n is under-consistent. Unlike
most other pathfinding algorithms, D* Lite utilizes an open list, but not a closed list. The open
list contains all inconsistent nodes. The order, in which the nodes are sorted in the open list, is
determined by their key value.

The key value k(n) of a node is determined by using its g- and rhs-value, as well as a focusing
heuristic, and consists of two parts, similar to a primary and secondary key. If there is a tie
between two nodes’ primary keys, their secondary keys will be used as a tie breaker. [Cho10]

k(n) = [min(g(n), rhs(n)) + h(nstart, n) + km; min(g(n), rhs(n))][KL02c]

As can be seen in the formula, D* Lite uses the heuristic h(nstart, n
′) and a factor km to calculate

the key value. The use of h(nstart, n
′)is comparable to the use of a heuristic h(n) to calculate

the f -value in A*. Hereby the heuristic h(n, n′) has to be non-negative and backwards consistent.

17

Foundation

The factor kmis needed to avoid having to reorder the open list every time the start node changes,
e.g. due to a robot detecting changed arc costs after movement. Updating the path cost, D* Lite
considers the current robot location as the start node of the pathfinding algorithm. Assuming
the robot moved from a node n to node n′, where it detects changed arc cost, h(n, n′) is added
to km, which in turn is then considered when calculating new key values. This is necessary, since
after the movement the first key elements (primary keys) of nodes currently on the open list,
may have decreased by h(n, n′) at the most. Likewise, when new key values are calculated, their
first elements would be h(n, n′) too low relative to key-values already in the open list. This is
balanced by the addition of km to all new key values. [KL02c]

The following graph shows a structure of the D* Lite pathfinding algorithm. It does not include
the termination condition for the case that no path is found: If after a search g(nstart) = ∞,
then there is no path with finite cost between nstart and ngoal. [KL02c]

Figure 13: Structure of D* Lite [KL02c]

18

Foundation

An example of the D* Lite algorithm can be found as Figure 54 and Figure 55 in the Appendix
or at [Cho10] from page 75 onwards.

In general D* Lite terminates, is correct, and at least as efficient as D*. Furthermore, as
mentioned at the beginning of this chapter, D* Lite is easily extendable for optimizations.
These optimization possibilities include a modification of the termination condition, as well as
an optimization when computing the rhs-values of predecessors of over-consistent nodes. For
detailed information on optimization possibilities for D* Lite see [KL02b] chapter 5.1. [KL02b]

2.2.6 Field D*

Field D* is an any-angle pathfinding algorithm, which uses liner interpolation to calculate more
precise estimates of path costs. It thereby is able to find smooth paths through non-uniform
cost grids, not limiting movement to grid edges. This algorithm was first introduced by Dave
Ferguson and Anthony Stentz (see D*) in 2005. [FS05]

As the name suggests, Field D* extends D* and D* Lite. Since the core novelty of Field D*
is a new method of calculating path cots, it does not change the underlying structure of any
algorithm, and therefore can be plugged into a number of other algorithms. Field D* differs
from most other grid-based pathfinding algorithms only in the layout of nodes and the method
of calculating the path cost value of each node. [FS05]

The first modification of D* is simple. Instead of assigning each node as the centre of a grid
cell, nodes are assigned to the corners of grid cells, as seen in Figure 14. [FS05]

Figure 14: Layout of Nodes [FS05]

The second modification, namely the calculation estimations of path costs utilizing linear interpolation,
is more complex.

19

Foundation

For classic grid-based pathfinding algorithms g(n) is calculated as

g(n) = min
n′∈nnbr(n)

(c(n, n′) + g(n′)) (1)

with nnbr(n) being all neighbours of n, c(n, n′) the cost of travelling from n to n′ and g(n′) the
path cost of n′ [FS05]. This, however, restricts movement to grid edges, which leads to unnatural
looking movement and sub-optimal paths, as already discussed in the context of Theta*. To get
the actual optimal path cost of a node n, the path must be allowed to pass through any edges
connecting two adjacent neighbours of n [FS05] , for example −−→n1n2 (see Figure 15).

Knowing the g-values of all possible intersection points ny of the path with such a connecting
edge, g(n) could be calculated by minimising:

g(n) = c(n, ny) + g(ny) (2)

Since there are an infinite numbers of points ny, it is not possible to calculate each of their
g-values individually. Instead linear interpolation is used. To do so, it is assumed that every
value g(ny), with ny being a point on the edge connecting n1 and n2, is a linear combination of
g(n1) and g(n2)

g(ny) = y ∗ g(n2) + (1− y) ∗ g(n1) (3)

where y is the distance of n1 to ny (see Figure 15), assuming the use of unit cells. [FS06]
Of course, using linear interpolation, the resulting path cost value is only an assumption and
might not be perfect. According to the authors, though, “this linear approximation works well
in practice” [FS06, p. 6]. Knowing g(ny), equation 3 can now be plugged into 2 and g(n) is
calculated as

g(n) = min
x,y

(bx+ c
√

(1− x)2 + y2 + yg(n2) + (1− y)g(n1)) (4)

with x ∈ [0, 1] being the distance of travelling on the bottom edge before crossing through the
grid cell, and b and c being cell costs as shown in Figure 15. [FS06]

Figure 15: Shortest path of n through edge ~n1n2 [FS05]

20

Foundation

With (x∗, y∗) being a pair of values for x and y solving the minimization of equation 4, it is
proven that at least one of these values is zero or one. If it is cheapest to pass through n1 and
there is no part crossing through the centre of the cell, then y∗ = 0 (Figure 15 (ii)). If there is
any part of the cheapest path crossing through the centre of the cell, though, then this part is as
large as possible, resulting in either x∗ = 0 or y∗ = 1.Therefore, the path either travels partly
along the bottom edge before crossing all the way to n2 (Figure 15 (iii)) or it crosses directly to
a point ny on the edge between n1 and n2 (Figure 15 (iv)). Note, that as a conclusion Figure 15
(i) is not an optimal path. For detailed proof of this circumstance see [FS05] page 5-7. [FS06]

Which of the paths is the most optimal depends on the relative sizes of cell costs c and b, as
well as the “difference of path cost between n1 and n2” [FS06, p. 6]. For this f will henceforth
be defined as:

f = g(n1)− g(n2)

For f < 0 it is given that g(n1) < g(n2) and therefore it is cheapest to travel along the
bottom edge from n to n1 (Figure 15 (ii)). In this case g(n) is not dependent on y and can
simply be calculated as:

g(n) = min(c, b) + g(n1) (5)

If f < b , it is cheapest to use none of the bottom edge (Figure 15 (iv)). In this case k is set to
k = f and the path cost of n is calculated as:

g(n) = c
√

1 + y2 + k(1− y) + g(n2) (6)

As can be seen the path cost of n is now dependent of y. To determine the optimal y to minimize
g(n) the derivative of this cost (of equation 6) is taken with respect to y and set equal to zero.
This results in the optimal value of y, y∗:

y∗ =

√
k2

c2 − k2 (7)

If f > b , it is cheapest to use some part of the bottom edge before crossing through the cell
all the way to n2 (Figure 15 (iii)). For this equations 6 and 7 are used where k is set to k = b ,
and y∗ is substituted with y∗ = 1− x∗. [FS05, FS06]

In cases where f = b, the cost of using some part of the bottom edge is equal to the cost of
using none of the bottom edge. Which cost is used is then dependent on the implementation of
the algorithm. [FS05, FS06]

21

Foundation

The full code of the ComputeCost function as stated by the authors is shown in Figure 16. In
addition to all cases named above it is also taken into account, that if c < b, or respectively if
c < f , then the path cost of n can be calculated as

g(n) =
√

2 + g(n2) (8)

(see Figure 16 line 10 and line 15). [FS05]

Figure 16: ComputeCost-function of Field D* [FS05]

As already mentioned, this method of calculating the path cost can be used with a number of
other algorithms. In their paper Ferguson and Stentz base Field D* on D* Lite, therefore the
same is applied in this bachelor’s thesis. [FS05]

In this case the ComputeCost function is used to calculate nodes’ rhs-values. Field D* thereby
finds paths, which are optimal with respect to the used linear interpolation assumption. Once
the optimal path cost has been determined, the path can be extracted. This is done by iteratively
calculating the next point ny to move to, using the same linear interpolation principles explained
above. Due to the linear interpolation only being an assumption, some precautionary steps
should be taken whilst extracting the path, for example taking a one-step lookahead into account.
[FS05]

22

Foundation

A 3-dimensional version of this algorithm has been developed by Joseph Carsten, Dave Ferguson,
and Anthony Stentz in 2006 [CFS06].

2.2.7 AD*

Anytime Dynamic A* (AD*) is a heuristic-based anytime replanning algorithm, first presented
in 2005 by Maxim Likhachev (see ARA* and D* Lite), Dave Ferguson (see Field D*), Geoff
Gordon (see ARA*), Anthony Stentz (see D*) and Sebastian Thrun (see ARA*). [LF+05]

As the name suggests AD* is a pathfinding algorithm that combines the advantages of anytime
algorithms, used to compute sub-optimal solutions in short times, with those of replanning
algorithms, used for dynamic environments. To be precise, AD* combines a backwards version
of the anytime algorithm ARA* with the replanning algorithm D* Lite. Thus, it is able to
compute a sub-optimal solution quickly, which gets improved over time, and is also able to react
to changes in the dynamic environment. [LF+05]

ARA* is explained in chapter 2.2.2 of this bachelor’s thesis. It is a pathfinding algorithm,
that uses a heuristic, inflated by a factor ε > 1, to quickly find a ε-sub-optimal solution. ARA*
reuses information from previously run searches to increase its efficiency, but it does not consider
dynamic environments. If any arc costs are changed, it has to recalculate everything from
scratch. AD* uses a backwards version of ARA*. This means the heuristics used now estimates
the distance from a given node to the start nstart instead of the goal node ngoal. Additionally,
at the beginning ngoal has to be inserted into the open list instead of nstart.

The replanning algorithm D* Lite is explained in chapter 2.2.5 of this thesis. It is a pathfinding
algorithm, designed to perform well in partly known or dynamic environments. Detecting
changes in any arc costs, it replans its found path reusing information from previous searches.
It thereby is quite efficient in its replanning, but always calculates until the optimal solution is
found.

In real-world applications, as well as in game applications, it is often necessary to work with
only partially-known or dynamic environments, and still get results very quickly. AD* is an
interesting option in this regard, since it breaches the gap between these two requirements.
[LF+05]

As already mentioned, AD* combines ARA* with D* Lite. AD* copies the use of an open, closed,
and incons list from ARA*, but stores and calculates the g- and rhs-value of each node like D*
Lite. Nodes get inserted into the open list when they become inconsistent, g(n) 6= rhs(n) ,
the first time and are removed from the open list once they get expanded. All of the already
expanded nodes are stored in the closed list. Nodes that become inconsistent but are already

23

Foundation

in the closed list are inserted into the incons list. The priority of nodes in the open list is
based on their key value. AD* determines the key value similar to D* Lite but differentiates
between under-consistent and over-consistent nodes. For under-consistent nodes to propagate
their changed cost to affected neighbours, their key has to be calculated using a non-inflated
heuristic. [LF+05]

k(n) =

[rhs(n) + ε ∗ h(nstart, n); rhs(n)], if n is over-consistent

[g(n) + h(nstart, n); g(n)], if n is under-consisten

Figure 18 shows a simplified structure of the AD* algorithm. The assumption is made that
the algorithm is used for a robot and that the robot starts moving, following the shortest path
towards the goal as soon as a sub-optimal solution is found. The robot follows the sub-optimal
solution and thereby updates nstart of the algorithm, whilst the algorithm keeps optimizing by
decreasing ε. Since the key values of nodes in the open list are updated each time ε is decreased,
it is not necessary to take the movement into account during the calculation of the key, like in
D* Lite. Whenever arc cost changes are detected, the dynamic part of AD* reacts to those. If
the detected changes are too significant, it is suggested to increase ε or replan from scratch. The
threshold of “too significant” has to be determined for every application individually. [LF+05]

The following graph shows the UpdateState function of AD*. It is responsible for updating the
rhs-values of nodes as well as sorting them into the correct lists. Orange framed objects are
part of the algorithm similar to ARA*. Blue framed ones are similar to D* Lite.

Figure 17: UpdateState-function of AD* [LF+05]

24

Foundation

The following graph shows a simplified structure of AD*, which calls UpdateState, seen in Figure
17.

Figure 18: Structure of AD* [LF+05]

25

Foundation

2.2.8 Conclusion

In this chapter a selection of pathfinding algorithms has been introduced. With the exception
of the A* pathfinding algorithms, which lays a foundation for all other algorithms, they were
selected because of their suitable characteristics for their implementation in a dynamic computer
game.

In the fast-changing environment of games it is important to use algorithms, which can deliver
results quickly and/or are able to react to changes in the game environment. Anytime algorithms,
like ARA*, are able to deliver sub-optimal results quickly and improve in the course of time.
Dynamic algorithms, like D* and D* Lite, can react to changes in the game environment. The
anytime dynamic algorithm AD* combines both these qualities.

Another interesting feature to use in games is the characteristic of certain algorithms to not
limit movement to grid edges, allowing for smoother looking paths. Two algorithms possessing
this characteristic are Theta* and Field D*.

26

Foundation

2.3 Currently used systems
Most of the pathfinding algorithms presented in chapter 2.2 were originally developed for the field
of robotics. A* for example was developed as part of the work on “Shakey the Robot” [Wik18c]
and D* was implemented in Mars Rover prototypes [KL02c]. Next to robotics, non-player
characters in games are a common application for pathfinding systems. With the goal of this
bachelor’s thesis being the implementation of a suitable pathfinding algorithm in a computer
game, the following chapter presents current applications, practices, and tools for implementing
pathfinding in games.

2.3.1 Pathfinding in games

In many games pathfinding is one of the first features implemented into an AI. The core of these
pathfinding systems is often based on the A* algorithm. Whether it is utilized for moving whole
armies over grid-like world maps in strategy games such as “Civilization V” or “Age of Empires”,
or for navigating non-player characters in first-person shooters, such as “Counter Strike” or “Left
4 Dead”. [XH11], [Boo09], [Boo04]

For the cooperative first-person shooter “Left 4 Dead”, published by Valve Corporations in
2008, a presentation (see [Boo09]) was published providing information about the game’s AI
system. Part of this AI system is a pathfinding and navigation system. Hereby the navigation
system is divided into two parts: finding the shortest path and then following that path. For
pathfinding, A* is used on a Navigation Mesh. This produces a rather jagged path. Therefore,
the movement along the path is smoothed in a second step. For this the AI uses a look-ahead
and steers towards a point further down the path, utilizing local obstacle avoidance as it moves.
Figure 19 indicated the Navigation Mesh with dotted lines, the shortest path found by A* with
arrows, and the path the AI moves along with the blue line. [Boo09]

Figure 19: Navigation in Left 4 Dead [Boo09]

27

Foundation

As can be seen in this example, it is common practice for navigation systems in computer
games to use a global pathfinding algorithm like A*, which delivers a jagged path, and to use
algorithms designed to smooth the path afterwards. To avoid or at least simplify the necessity
of post-smoothing, any-angle pathfinding algorithms, such as Theta*, can be used. A group at
Yeungnam University in Gyeongsan-si, South Korea, compared Theta* with a post-smoothing
variant of A*, by running both algorithms over abstracted maps of the games “Dota 2” and
“League of Legends”. Overall, they found that Theta* results in shorter paths than A*, but also
takes longer to find them. The exact method of abstracting these maps and details about their
experiment can be read in their paper. [PN+17]

Another approach to pathfinding in modern computer games is the use of hierarchic pathfinding
algorithms, for example Hierarchical Path-Finding A* (HPA*), which is described in [BMS04].
This algorithm again uses A* at its core but breaks the search effort into different levels. To do
so neighbouring nodes are clustered together to form a more abstract search graph, which can
be processed faster than the low-level, more detailed, search graph. Repeating this clustering
process, multiple levels can be created. As the name “hierarchical” suggests, these levels are then
processed from top to bottom. This means that hierarchical pathfinding algorithms first find a
rough abstract of a path, which is then refined with every processed level. [Cha07] Moreover,
the algorithm only computes the exact path, using the lower level search graphs, for currently
needed clusters. Should the exact path have been computed in all clusters before an AI starts
moving along this path, there is a great chance that it has become invalid in some of those
clusters by the time the AI arrives at them, due to a dynamic game environment. By only
computing exact paths once they are needed, the chance of them becoming invalid is reduced
and less search effort is wasted. [BMS04]

The methods used for pathfinding in games described above are designed for moving on the
floor, and thereby navigation is more or less restricted to only two dimensions.

2.3.2 Navigation system in Unity

When implementing pathfinding in Artificial Intelligences during the development with the
game engine Unity, a commonly used tool is Unity’s integrated Navigation System. It is a
powerful and easy to use tool, suitable for implementing pathfinding and navigation in a range
of game scenarios. Overall Unity’s Navigation System consists of a Navigation Mesh, also called
NavMesh, a NavMesh Agent, NavMesh Obstacles, and Off-Mesh Links, seen in Figure
20. [Uni18d]

Unity’s navigation system is primarily developed for navigating agents which are moving on
the floor. For this purpose, places in the scene, where agents can stand or move, are defined

28

Foundation

Figure 20: Unity’s Navigation System [Uni18d]

as walkable areas. Unity builds walkable areas automatically using the geometry in the scene.
These areas are then connected into a surface, which defines the navigation mesh, in short
NavMesh. The NavMesh, shown in blue in Figure 20, consists of convex polygons, and not
only stores polygon boundaries, but also information about which polygons neighbour each
other [Uni18a]. Furthermore, areas can be assigned a cost value, for example to discourage the
pathfinder to route agents through water [Uni18c]. The process of creating a NavMesh for a
scene is often called “baking” and it can be performed before starting the game, as well as during
runtime.

Once the NavMesh for a scene has been generated a NavMesh agent can be navigated through
the scene, from a given starting point to a given goal. It thereby follows the shortest path
as well as avoids collision with obstacles or other agents [Uni18d]. Navigating an agent Unity
differentiates between two kinds of navigation problems. One is using the NavMesh to determine
the shortest path from start to goal. This is a global and rather static process. The second
problem is for the agent to follow the determined path, whilst additionally avoiding moving
obstacles or other agents. This is a more local and dynamic process. The interaction between
these two processes can be seen in Figure 21. [Uni18a]

To find the shortest path using the NavMesh, the start and goal points first have to be mapped to
the polygons closest to them. Afterwards an A* pathfinding algorithm is used to determine the
shortest path from the start polygon to the goal polygon. The sequence of polygons describing
this path is called the “corridor”. [Uni18a]

The agent follows this corridor by always steering towards the next visible corner of the corridor.

29

Foundation

Figure 21: Global and Local Navigation [Uni18a]

For this it first determines the needed direction and velocity to reach the next corner. It then
uses reciprocal velocity obstacles (RVO) to predict possible collisions with moving obstacles and
adjusts the velocity accordingly. [Uni18a]

In order for the agent to know which obstacles to avoid collision with, they have to contain
a NavMesh obstacle component. A NavMesh obstacle can impact the navigation either on
a global or a local level. For the former it can change the NavMesh by carving holes into it
where they touch. Thereby it becomes part of the NavMesh and is considered during the global
process of pathfinding. For moving obstacles this means that the NavMesh has to be updated
quite often. Therefore, it is recommended to use the latter option for moving obstacles. In this
case the agent uses local obstacle avoidance and neither the NavMesh nor the found path have
to be updated when obstacles move. The difference between these two options can be seen in
Figure 22, where the red line indicates the shortest path the agent is trying to follow and the
blue line indicates the rim of the NavMesh. Since local obstacle avoidance does not consider the
whole scene, there is a possibility for the agent to get stuck in cluttered environments. Thus, it
is useful to enable carving again, once an obstacle becomes stationary. [Uni18a, Uni18b]

Figure 22: Local obstacle avoidance (left) and carving (right) [Uni18a]

30

Foundation

All in all, Unity’s Navigation System works well for agents moving on the floor, as is the
case in most games where the player steers a human-like or driving character, as in shooters,
adventure- or racing games. The Navigation System furthermore supports environments with
some dynamic aspects, such as other moving agents or a number of moving obstacles. Mostly,
dynamic aspects are supported by utilizing local obstacle avoidance rather than the pathfinding
algorithm adjusting to it. For this reason, Unity’s Navigation System is not suitable to be
implemented in the “Lost in Space”.

2.3.3 Path Finder 3D

So far, all pathfinding applications and methods presented in this chapter were designed for
navigation in two dimensions, namely on the ground. The game in this bachelor’s thesis needs
to implement pathfinding in 3 dimensions, though. The Unity plugin “Pathfinder 3D”, developed
by Graceful Algorithms, enables game developers to do exactly that. “Pathfinder 3D” creates a
cell-based search graph setting all cells containing obstacles as impassable. Impassable cells are
framed in red in Figure 23.

Figure 23: Pathfinding with PathFinder 3D [Gra18]

Once the search graph is generated, the programmer can choose between using a modification
of the A* pathfinding algorithm or the Lee algorithm to compute the shortest path between two
points in the search space (blue and pink spheres in Figure 23 indicate start and end point).
[Gra18]

Even though “PathFinder 3D” enables the user to find paths in a 3-dimensional space, it is not
suitable for “Lost in Space” since it cannot react well to dynamic environments. Every time an
obstacle is moved, the search graph has to be re-build and the path re-calculated from scratch.
Since this process is quite laborious, one should use it as little as possible. [Gra18]

31

3 Concept

The goal of this bachelor’s thesis is to realise a project implementing and comparing different
pathfinding algorithms in a dynamic 3-dimenstional space. Considerations made for the execution
of this project will be argued in the following chapter.

3.1 Development and testing environment
Since games provide the possibility to control all environmental factors and replicate the exact
same setting several times, they are the optimal choice to produce comparable results. For
implementation, testing, and comparison of pathfinding algorithms in this bachelor’s thesis, an
abstract game environment is used. In comparison to the game environment in “Lost in Space”,
the test environment is smaller and more controllable. It excludes all types of random behaviours,
ensuring a replica of the exact same environment for each tested algorithm. Additionally, the
test environment is more complex, requiring the algorithm to take more turns and to react to
different kinds of dynamic obstacles. Results acquired within this bachelor’s thesis will then be
tested and verified by implementing them in a real game setting, namely in the game “Lost in
Space” described in 2.1.

The development of the game and the testing environment, as well as the pathfinding
implementation, will be realised using the game engine Unity (Unity 2018.2.10f1).

3.2 Proceeding
Before any pathfinding or navigation system can be worked on, the game “Lost in Space”, as
well as the test environment, foremost used for implementation, have to be set up and main
functionalities implemented.

In the case of “Lost in Space” this means to first set up the main game functions. This includes
the player’s and asteroids’ movement as well as a shooting and damage system for the player. As
a next step the movement mechanic and the damage system of the enemy will be implemented.
As a default setting the enemy will steer in the direction of the player. It will take damage upon
collision with asteroids and when it is shot at by the player.

The test environment only requires very limited game functionalities. The main task is building
the environment and implementing all required movements for dynamic obstacles. The AI’s

32

Concept

movement will essentially be the same as the enemy’s in “Lost in Space”.

Once the environment is set up and the basic functions are implemented, a search space has to
be defined and set up for generating a search graph, that the pathfinding algorithms can utilize.
Two options of setting up a search graph are either to use a cell-grid, similar to “PathFinder 3D”,
or waypoints. The former requires the search space to be divided into a cell grid with each cell
representing a node. Each node can then be blocked or free. In the case of using waypoints,the
search graph is defined by a number of nodes represented by waypoints, which can be placed
in the environment either manually or automatically. During execution of this project both
methods will be set up and throughout implementation and testing it will be determined which
one is more suitable for each algorithm individually.

After completion of these prearrangements the enemy’s pathfinding system can be implemented.
Most algorithms detailed in chapter 2.2 will be used with the exception of D* and Field D*.
These will be excluded since simpler options for both are available. D* is replaced by D* Lite and
Theta* replaces Field D*. All other algorithms will be implemented and tested using both the
grid-cell and the waypoint search graph. The behaviour of each algorithm will be observed closely
and relevant data, needed for comparison in a later step, collected. Throughout the process of
implementation and testing, some algorithms might be optimized if it seems appropriate.

As a last step the behaviour and performance of the different algorithms will be measured,
analysed, and compared. Conclusions drawn from this analysis will provide information which
search graph setup and pathfinding algorithm is most suitable for use in the game “Lost in
Space”. Moreover, it will determine whether any post-processing of the path or the navigation
along the path is necessary.

3.3 Comparison
For comparison of the pathfinding algorithms information about a number of different aspects
needs to be collected and compared. On a basic level this includes observing whether the
algorithm is able to fulfil its task of catching the player without colliding with any obstacles.
Moreover, the total length of the path travelled by the AI from its starting point until it reaches
its destination is measured.

For further comparison on a more detailed level the total number of expanded nodes is counted
and the total time spent on calculations required for pathfinding is determined.

33

Concept

3.4 Additional considerations
For simplicity only one enemy will be in the game environment at a time. In “Lost in Space” it
will spawn at a certain distance from the player, then move towards the player and respawn on
collision with asteroids or with the player. In the abstract test environment the pathfinding AI
has a set starting position, to which it will also reset upon reaching the player or colliding with
obstacles.

Additionally, the conditions on which the search graph has to be updated and the algorithms
informed about its changes has to be defined. One possible condition would be to update the
search graph once an obstacle has moved more than a certain distance. Due to all dynamic
obstacles moving with similar speeds, it was decided to update the search graph in intervals.
The length of an interval, and thereby the duration between updates, can be chosen by the
developer.

3.5 Expected results
Since a suitable pathfinding algorithm for games like “Lost in Space” has to perform well in a
highly dynamic game environment as well as deliver results quickly, the most promising approach
is probably the AD* algorithm.

Due to its characteristic of not restricting its found paths to connections between nodes in the
search graph, the any-angle algorithm Theta* is also promising approach to finding shorter and
smoother-looking paths, than the other pathfinding algorithms.

34

4 Implementation

Previous chapters have introduced the game “Lost in Space”, laid a theoretical foundation
about a variation of pathfinding algorithms, and presented two possibilities for setting up a
search graph. In this chapter all these theoretical foundations will be put into practice. Fist,
the game “Lost in Space” and the abstract test environment will be developed. Following, a
cell-grid and a waypoint-based search graph are set up. Lastly, the main focus of this bachelor’s
thesis is implemented; the pathfinding algorithms A*, ARA*, Theta*, AD*, and D* Lite.3

4.1 Test environment
In the following chapter the implementation of the game “Lost in Space”, as well as the set-up
of the abstract test environment, foremost used for implementation, testing, and comparison of
the pathfinding algorithms, will be presented.

4.1.1 Lost in Space

The first step in implementing the game “Lost in Space” is to revisit the earlier version “Lost in
Space VR” to determine what assets and scripts can be reused, and which functionalities have
to be added or adjusted.

The main adjustment needed for “Lost in Space” is the transition from VR to non-VR, as well as
the use of a standard controller instead of the balancing board as a custom controller. Developing
a game in VR with this special controller, one had to pay close attention not to overwhelm the
player and be aware of the issue of motion sickness. Therefore, to avoid any negative effects on
the player, their movement was kept at a relatively slow pace and was quite restricted. Players
could only steer to the left and right, whilst the forward motion was simulated by a constant
movement of the asteroids. For this asteroids would spawn on approximately the same vertical
position as the player and move towards the centre point of the player’s movement orbit. To
avoid overwhelming the player, asteroids were initially spawned in circles around the centre (see
Figure 24). This resulted in asteroids arriving at the player in waves, giving time to collect
oneself in-between. Once asteroids hit the player or reached the centre of the orbit, they would
respawn on the outer circle and restart their movement. With this concept of player and asteroid
movement, the movement in the game is basically restricted to two dimensions.

3The result of these implementations can be downloaded from: https://github.com/CarinaKr/
Pathfinding-in-dynmic-3D-space

35

https://github.com/CarinaKr/Pathfinding-in-dynmic-3D-space
https://github.com/CarinaKr/Pathfinding-in-dynmic-3D-space

Implementation

Using a standard controller and not playing in VR the player feels a lot more comfortable and
confident. Therefore, in “Lost in Space” they are given a greater degree of freedom in their
movement, and a faster paced game. Players are advised to use a standard Xbox controller
to steer their UFO. They are positioned inside their UFO, seeing the game from the pilot’s
perspective. For steering the left analogue stick is used. Moving the analogue stick left and
right, the UFO turns to the left and right around its vertical axis. Moving the analogue stick up
and down, the UFO tilts upwards and downwards around its horizontal axis. The UFO always
moves with constant speed in its viewing direction. This enables the player to move freely
throughout the whole game field, expanding movement to all three dimensions. Additionally,
the player can look around by using the right analogue stick to turn the camera. Using the
X-button, the player can switch between two guns and use the left and right triggers at the back
of the controller for shooting. Guns can be re-loaded using the B-button. The player’s UFO
takes damage upon collision with asteroids and enemies.

To adapt the asteroids’ behaviour to the faster paced game and the greater degree of freedom,
two main aspects have to be adjusted.

First of all, asteroids do no longer have to be spawned in circles. Since players are more
accustomed to using a standard controller, no low-time between asteroid waves is required.
Thus, asteroids are now spawned in mostly random positions within a certain distance to the
player at the beginning of the game (see Figure 25). This results in a more chaotic asteroid
field, making the game more interesting and challenging.

Additionally, the player is now moving forwards on their own, so the asteroids do not have to
move towards them anymore to simulate the player’s forward movement. Instead asteroids now
move in mostly random directions. Moreover, asteroids move with different speeds, depending
on their size. Large asteroids move slower than smaller ones.

Looking at the game environment from an outside point of view, it seems as though there is a
sphere of asteroids surrounding the player. Throughout the game this sphere moves, keeping the
player at its centre. This effect is caused due to asteroids only existing within a certain radius
around the player. If their distance to the player gets too great, due to the player’s or their
own movement, they respawn at the outer rim of the sphere. Using this method, it is ensured
that the number of asteroids present in the game scene is limited to a finite number. It is also
the reason for the only constraint to the randomness of the asteroids’ movement. To ensure
asteroids do not have to be respawned immediately after appearing, their movement is limited
to directions leading them further to the centre of the sphere, in other words decreasing their
distance to the player, instead of out of it.

36

Implementation

To reduce the number of asteroids needed in the game scene further, tests have shown that a
full sphere is not actually necessary. Instead a flattened sphere in vertical direction, meaning a
lower value of vertical spread, is sufficient. Tests have also shown that additionally rules have to
be implemented to ensure asteroids are evenly spread throughout the whole sphere. Therefore,
they are instantiated in overlapping vertical layers, with a given number of asteroids on each
layer. The result of this spreading method can be seen in Figure 27.

Figure 24 and Figure 25 show the difference of spawning the asteroids at the beginning of the
game from a top-down view. Figure 26 and Figure 27 show the difference of spawning the
asteroids at the beginning of the game from a side-view. Asteroids are framed in yellow, the
red, green, and blue arrows indicate the x-, y-, and z-axis of the game field and are currently
anchored at the centre of the game field.

Figure 24: Spawn asteroids in circles (top-down) Figure 25: Spawn asteroids in flattened sphere
(top-down)

Figure 26: Spawn asteroids in circles (side-view)

37

Implementation

Figure 27: Spawn asteroids in flattened sphere (side-view)

As a last step the enemy’s movement and damage system is implemented. Enemies take damage
upon collision with asteroids, and if they are shot by the player. Once an enemy has lost all its
health, they get respawned at the outer rim of the game field. An enemy’s movement can be
directed by either giving it the next destination point to move towards, or by turning it to face
into the correct direction, in which case it will move in its viewing direction. In both cases the
enemy moves at a constant speed. Unless given any other direction the enemy by default moves
on a direct line towards the player.

In conclusion it can be said, that from the original game only the overall idea of the space-themed
game is transmitted. All visual assets, such as 3D models and textures, can be reused for “Lost
in Space”, but most of the scripting has to be redone, due to the changed movement concept of
the player and asteroids.

4.1.2 Abstract test environment

For implementing, testing, and comparing the different pathfinding algorithms throughout this
bachelor’s thesis an abstract test environment is used. The main reason for this is to ensure that
all algorithms are tested in the exact same setting to produce comparable results. Therefore,
the used environment has to be completely controllable and not contain any random factors.

The setup of the abstract testing environment can be seen in Figure 28. Overall the environment
is set up in a cuboid shape and consists of different static and dynamic objects. Static objects are
white, dynamic objects are color-coded dependent on their type of movement. Green obstacles
move with constant speed between patrol points, red obstacles turn around their z-axis, dark
blue obstacles rotate around their x-axis, and light blue obstacles appear and disappear on a set
timer. For testing purposes, dynamic obstacles do not collide with static obstacles or with each
other.

38

Implementation

In this environment the pathfinding AI is represented by a dark-green sphere, which starts at
the top left corner and tries to reach a goal, represented by a orange sphere, at the bottom right
corner. The goal can also be made dynamic by defining patrol points for it to move between.

Please note that this environment is for test purposes only and therefore does not contain any
interesting gameplay aspects.

Figure 28: Abstract test environment

39

Implementation

4.2 Search graph
Before pathfinding algorithms can be implemented into any environment, a search space has
to be defined and a search graph constructed for it. For the abstract test environment, used
for implementation, testing, and comparison of pathfinding algorithms in this bachelor’s thesis,
the search space is defined to be a cuboid with the dimensions 64 units x 56 units x 16 units
(X x Y x Z). Due to the development with the Unity game engine, all measurements will be given
in “units”. Hereby one “unit” equals one unit in Unity. Overall a uniform cost environment is
assumed. Therefore, the unobstructed path cost c(n, n′) between any node n and its neighbour
n′ is the distance between them.

Two ways to construct a search graph for this search space are the use of a cell-grid, similar to
“PathFinder 3D”, or to use waypoints. The implementation of both these options is documented
in the following chapter.

4.2.1 Cell-grid

The idea of dividing the search space into a 3-dimensional cell-grid is based on the common use
of cell-grids in 2-dimensional pathfinding applications, as can be seen on the examples given
throughout chapter 2.3.

In the cell-grid every cell represents a node, with the node’s position being the centre of the
cell. Due to this correlation, the phrasing “node” and “cell” will be used interchangeably. For
the used test environment each cell is defined to be a cube with the side length of 1 unit. Given
the search space is 64x56x16 units3, the complete search space consists of 57344 cells. Figure
29 shows the setup cell grid from an orthographic front view, Figure 30 shows the cell grid from
an angled view. Cells are framed in blue and for reasons of clarity only the top left part of the
search field is shown. For an image of the full cell grid see Figure 56 in the Appendix.

Each node has a maximum of six neighbours: the node of each connecting cell in x-, y-, and
z-direction. There are no connections between cells which are only sharing the position of one
vertex, in other words there are no diagonal connections. Figure 31 indicates the connection of
a node to all its neighbours with yellow lines. For a full image of the cell grid with neighbouring
connections see Figure 57 in the Appendix.

40

Implementation

Figure 29: Part of cell-grid (orthographic front view) Figure 30: Part of cell-gird (angled view)

(i) (ii)

Figure 31: Neighbours in 3-dimensional cell-grid

Each cell, and therefore its corresponding node, can either be blocked or free. A cell is defined
as blocked, if it overlaps with any obstacle. This means, a cell is blocked once it is even partially
obstructed by an obstacle. Figure 32 shows all free cells in green and all blocked cells in red.
Overall a uniform cost environment is assumed. Therefore, the path cost c(n, n′) from a node n
to any of its neighbours n′ is either the size of the cell or infinite:

c(n, n′) =

cellSize, n is free and n′ is free

∞, n is blocked or n′ is blocked

In theory the developer can choose the size of the cells freely. They should pay attention, though,
not to make them too large or too small. The cell size has to be balanced between the required
computing power and the accuracy of the path. The larger the cells are, the fewer are needed.

41

Implementation

Figure 32: Cell-gird with blocked and free cells

This results in less computing power to be needed. If cells are too large, though, the found path
might be inaccurate. Since a node is already marked as blocked if its cell is partially obstructed,
larger cells might lead to the pathfinding algorithm considering paths blocked that are narrower
than the cell size, but might be wide enough for the player. An additional factor to consider
when choosing the cell size is based on the concept of movement used by Unity. In Unity it is
standard to take the players centre as its current position. When the player moves from one
node to the next, they move their own centre from the centre of one cell to the centre of the
next cell. Therefore, if the cells are smaller than the player’s radius, the player might collide
with obstacles whilst moving to the next node. The other way around, the larger cells are, the
more distance will be between the player’s position and the border of obstacles.

42

Implementation

4.2.2 Waypoints

A second method for creating the search graph is to use waypoints. Generally speaking,
waypoints define places in the search field for the player to stand upon, which have connections
between each other for the player to travel along. In the case of using waypoints in the context
of pathfinding, each waypoint represents a node of the search graph. Therefore, the phrasing
“waypoint” and “node” will be used interchangeably.

In theory, waypoints could be placed in the search space by the developer manually. Considering
the extent a search space might have, though, and especially in dynamic environments, this
process could be quite time consuming. Therefore, creating waypoints for search spaces in this
bachelor’s thesis is done automatically. To create waypoints in a sensible manner, the idea is
used that the pathfinding AI should only have to change directions at edges of obstacles. For
this reason, one waypoint is assigned to each corner, also called vertex, of each obstacle and a
variable number of waypoints is placed on the edges connecting these vertex-waypoints.

For generating waypoints automatically at each vertex of an obstacle, a mesh, assigned to the
obstacles, is used. The developer can choose to either use the obstacle’s mesh or to assign
a separate mesh, which will only be used for creating waypoints. To successfully generate
waypoints around an object that the player can travel in between without collision, the mesh
used for generating these waypoints has to resemble, or lay outside of, the mesh used for collision
detection. In practise this means, if an object’s collider resembles the shape and size of that
object, as for example in Figure 33, the object’s mesh can be used. Otherwise, for example
when using Unity’s standard colliders to simplify complex objects or when using convex mesh
colliders, a separate mesh needs to be assigned for the waypoint generation. In the following
figures the used colliders are framed in green. Figure 34 shows the use of a convex mesh collider.
As can be seen in the top left corner, the collider does not resemble the shape of the object
completely. Therefore, to avoid collisions of the AI with the object’s collider, not the object’s
mesh but a separate mesh, resembling the shape and size of the convex mesh collider, is used
for generating the waypoints.

Additionally, to prevent collision of the AI with obstacles, the player’s radius has to be factored
in when placing waypoints. Therefore, waypoints are not located on the exact position of a
mesh’s vertex but offset by the player’s radius plus a variable margin.

43

Implementation

Figure 33: Cube with box collider Figure 34: Asteroid with convex mesh collider

To realise the generation of waypoints some functions provided by Unity in regard to dealing
with meshes are used. Firstly, Unity includes a function which returns an array of 3-dimensional
vectors, listing all vertex-positions of a given mesh. Examining this array, it can be observed that
certain positions are listed multiple times. This is caused by the function returning the position
of all individual vertices. Since some vertices might have the same position but differentiate in
other attributes, such as normal- or tangential-vectors, they are not the same vertex and therefore
their positions will be listed individually. Secondly, Unity provides a function returning an array,
which contains each vertices’ normal-vector. Lastly, as customary, all meshes are constructed of
a finite number of triangles. Therefore, Unity includes a function providing information which
vertices form the corners of each of these triangles.

Cumulating, combining, and utilizing all this information one knows the position of each vertex,
the normal vectors of all faces adjacent to this vertex, and which vertices are neighbours to each
other.

Adding up the normal vectors of all faces adjacent to a vertex and normalizing the result, results
in the direction in which to offset the waypoint. Multiplying the offset direction vector with

the magnitude of the vector

player radius+margin
player radius+margin
player radius+margin

 and adding the result to the vertex’

position, the position of the waypoint associated with this vertex is calculated. In the following,
these waypoints will be called vertex-waypoints and their resulting positioning can be seen as
yellow diamonds at the example of a cube and an asteroid in Figure 35 and Figure 36.

Since only assigning waypoints to each vertex of an obstacle can lead to rather rough search
graphs, a function was implemented for the developer to choose the maximum distance between
waypoints. To create these in-between waypoints, the first step is to determine which

44

Implementation

Figure 35: Cube with waypoints Figure 36: Asteroid with waypoints

vertex-waypoints are neighbours to each other. As stated above, the information about which
vertices are neighbours to each other can be gained by utilizing Unity’s mesh functions.
Vertex-waypoints are defined to be neighbours when their associated vertices are neighbours.
If the distance between a vertex-waypoint n and any of its neighbouring vertex-waypoints n′ is
greater than the defined maximum distance, additional waypoints are placed regularly spaced
on the edge connecting n and n′. An example can be seen in Figure 37. For performance reasons
the maximum distance between waypoints should be chosen as large as reasonable.

Figure 37: Cube with additional waypoints

45

Implementation

The connections between waypoints have to be defined in a next step. In other words, it has
to be determined which waypoints are neighbours to each other. Doing so, direct and indirect
neighbours are differentiated. Direct neighbours of a waypoint n are neighbours that are assigned
to the same obstacle as n. Indirect neighbours of n are waypoints assigned to other obstacles
than n.

In order to determine direct neighbours of waypoints, information about which waypoints are
on each edge is stored upon instantiation of the waypoints. Hereby waypoints are stored in so
called edge lists. Each list starts and ends with a vertex-waypoint and all waypoints in-between
them are ordered by their distance to the starting vertex-waypoint of this list. Vertex-waypoints
are part of multiple edge list, since they lay on multiple edges simultaneously. Utilizing this
information, each closest waypoint n′ of each edge list containing the vertex-waypoint n is
defined to be a direct neighbour of n. In-between waypoints get assigned each waypoint before
and after them in the ordered edge list as a direct neighbour. Additionally, the closest waypoint
n′ which has a line-of-sight to the in-between waypoint n and additionally is on an edge sharing
the vertex-waypoint closest to n is assigned as a direct neighbour to n.

In Figure 38 and Figure 39 connections between waypoints are indicated by yellow lines. Figure
38 shows the connections between waypoints, using a maximum distance between waypoints of
1 unit on a cube with a side length of 5 units. In Figure 39 waypoints are only assigned to
vertices. For a better overview, only some of the connections are shown in this image. One can
clearly notice the similarities between the pattern shown by connecting lines and the objects
collider, seen in Figure 34.

Figure 38: Direct neighbours on cube Figure 39: Direct neighbours on asteroid

Due to direct neighbours being relative to their obstacle, they are consistent throughout the
whole pathfinding application, even if the obstacle is dynamic. This means, a waypoint n
always has the same direct neighbours n′ and, as long as the path between them is not blocked,
the path cost c(n, n′) remains the same.

46

Implementation

To create connections between different obstacles, indirect neighbours of waypoints are defined.
Each waypoint n gets assigned the closest suitable waypoint as an indirect neighbour n′. A
waypoint is suitable, given it is on a different obstacle, not blocked, and the path between n

and n′ is not obstructed. Similar to cells in the cell-grid, waypoints can be blocked or free. A
waypoint is defined as blocked, if a sphere with the player’s radius positioned at the wayoint’s
current position would overlap with any obstacle. A waypoint is also defined as blocked, if it lays
outside of the search field. To determine whether the path between two waypoints is obstructed,
a line-of-sight check is run between them. To produce usable results, the line-of-sight check must
also factor in the player’s radius. Figure 40 indicates all neighbouring connections, direct and
indirect, in yellow.

Figure 40: Test environment with all waypoint-connections (angled-view)

Since indirect neighbours are very much dependent on the current position and rotation of an
obstacle, as well as the position and rotation of all its surrounding obstacles, indirect neighbours
change constantly in a dynamic environment. It follows that a waypoint n is not always assigned
the same indirect neighbour n′. When the dynamic environment changes, indirect neighbours
have to be reassigned. Also, the path cost c(n, n′) is not constant, but changes upon movement
or rotation of obstacles.

47

Implementation

The following figure shows the complete setup of the test environment using waypoints for
defining the search graph. In Figure 41 connections between neighbouring waypoints are shown
by yellow lines, blocked waypoints are indicated by red wire-framed cubes, and free waypoints by
green wire-framed ones. The green frame around the environment defines the border of the search
field. For this example, a maximum distance between waypoints of 5 units was chosen. This
value is subject to change and might be adjusted throughout the testing of different pathfinding
algorithms.

Figure 41: Test environment with all waypoints and connections (front-view)

48

Implementation

4.2.3 Conclusion

These are only two options of setting up a search graph for pathfinding in dynamic 3-dimensional
spaces. Multiple optimizations and changes could be applied to these methods. For example,
the layout of the cell-grid could be optimized by clustering certain areas. Also, the methods used
to place waypoints and determine direct and indirect neighbours could be done differently. For
example, waypoints could be positioned in the search field using different criteria. Additionally,
instead of only assigning one indirect neighbour to each waypoint, multiple indirect neighbours
could be assigned, using not only the closest, but also second and third closest suitable waypoints
as indirect neighbours. In addition, the placement of the waypoints does not consider any
real-world physics, such as gravitational forces two masses might exert towards each other.
Since the waypoints are rather close to larger obstacles, this might cause issues in a real-world
environment, but can be neglected in the current game environment. Due to this bachelor’s
thesis focusing on pathfinding algorithms and not on the optimal generation of search graphs,
the two methods described in this chapter are sufficient to be used as described for testing
purposes.

49

Implementation

4.3 Pathfinding algorithms
After the search graph has been setup, pathfinding algorithms can utilize it to compute the
shortest path from any given start node to any given goal node. In this chapter the implementation
of the pathfinding algorithms A*, ARA*, Theta*, D* Lite, and AD* will be discussed. At first
implementation decisions will be named which are relevant for all, or most of, the algorithms,
such as the heuristic or the implementation of the open, closed, and incons list. Further on,
the implementation process of each algorithm is discussed briefly, detailing the specifics of
each algorithm individually. From now on all implemented algorithms will be devided into
two groups: A*-based and D*-based algorithms. A*-based algorithms include A*, ARA*, and
Theta*. D*-base algorithms include D* Lite and AD*.

4.3.1 General implementation

Some general aspect of implementing the pathfinding algorithms, also in regard to the used
Game Engine Unity, will be discussed in this chapter.

4.3.1.1 Multi-threading

Implementing a pathfinding system into a dynamic game environment it not only has to be
ensured the pathfinding operates as quickly as possible, keeping up with the changing environment,
but it is also required that the overall game experience is not disrupted by it. One of the biggest
disturbances to be considered hereby are frame-drops. The pathfinding system, even after being
optimized, could potentially require extensive computation time, exceeding the time available
for one frame, assuming an ideal framerate of 60 FPS (Frames per Second) and a minimum
framerate of 30 FPS. Therefore, the pathfinding system has to be implemented in such a way
that it does not block the main thread, on which the majority of the game’s functions are
operating. Otherwise the overall game would not be able to run smoothly and thereby destruct
the player’s experience.

Due to the Unity Game Engine generally being frame based and single-threaded, working with
multiple threads is more challenging than with other programming languages and development
environments.

Instead of working with multi-threading, in Unity a common method of running complex or
time extensive operations asynchronously without them blocking the main thread, is to use so
called “coroutines”. To explain the exact workings of coroutines would be beyond the scope
of this thesis. Detailed explanations can be found online, for example at [Uni19a] or [UG16].

50

Implementation

To put it briefly, a coroutine is a certain kind of method, whose execution can be paused and
later resumed at the same point it was stopped once a certain condition is met. Hereby the
method is paused at least until the end of the current frame and can soonest be continued in
the next frame. This functionality enables the developer to split up complex calculations or
operations and spread them over multiple frames. Whilst the coroutine is pausing the rest of
the frame leaves capacities for other game functions to be executed. By running game functions
in between the algorithm’s calculation, the main thread is not blocked by the algorithm and no
frame-drops occur. Please note, that even though coroutines lead to the impression of multiple
functions running simultaneously, they do still operate on the main thread.

The challenge, when using coroutines with pathfinding algorithms, is to determine when to break
and pause the algorithm’s computation. In their core all pathfinding algorithms, described and
implemented in this thesis, utilize a while-loop to expand nodes until the goal node, or start node,
is reached. Therefore, one option is to simply break and pause at the end of each iteration of the
while-loop. Unfortunately, this causes the algorithm to pause until the end of the frame after
expanding each node. Computing the pathfinding algorithm would in this scenario take at least
as many frames, as it expands nodes, and would be heavily reliant on the overall framerate of the
game. For example, using the test environment described in 4.1.2, setting up the search graph by
using a cell grid as described in 4.2.1 and running an A* pathfinding algorithm with an inflation
factor ε = 1, on average 28295.99 nodes are expanded given a static AI and destination (see
Figure 48 (iii)). Assuming an average framerate of 60 FPS, A* would take about 471.6 seconds
(which is more than 7.5 minutes) to compute when pausing the coroutine after each expanded
node. Even in a static game environment this would be quite a long time for an algorithm to
compute before its results can be used by the AI. In a dynamic environment, though, it is highly
challenging, if not even impossible, to work with a pathfinding algorithm with this extensive
runtime. By the time the algorithm’s results can be used, the dynamic environment will most
likely have changed significantly and the moving AI will have collided with a moving obstacle.
Therefore, utilizing coroutines for the implementation of pathfinding algorithms in a dynamic
game environment is not a realistic option.

Since Unity 2017, a new way of implementing asynchronous methods became available - the
so-called “async-await” [Ver17] feature. In addition with the “Async Await Support” Asset
[Ver18] , which can be downloaded from the Unity Asset Store for free, one can now also execute
multiple threads as described in [Ver17]. The downside of this feature is, that even though now
functions, such as calculations, can be executed on a background thread, the Unity API can not
be used in any of these functions. In other words, the Unity API can not be called from the
background thread. This fact has to be considered carefully during the development process and
eventually it is the decisive factor of whether a function can be run on the background thread,

51

Implementation

or whether a coroutine has to be used. Adapting some functions to this restriction, it is possible
to implement most of the pathfinding algorithms to run on a background thread. The only
exception is Theta*, since it is reliant on line-of-sight checks, and therefore on Unity’s physics
(see 4.3.2.3).

4.3.1.2 Open, closed, and incons list

Whether the pathfinding algorithm is run in a coroutine or on a background thread, the open
list is a vital part of each of the pathfinding algorithms implemented in this thesis. Just as
much the closed list, which all pathfinding algorithms except D* Lite utilize, and the incons list,
which is utilized by ARA* and AD*. During the implementation of the pathfinding algorithms,
testing has shown that operations requiring interaction with these lists were amongst the most
time consuming, and thereby expensive, ones. Therefore, the implementation details of these
lists have to be considered carefully. In this chapter, the development process and final setup of
the open, closed, and incons list as they are used for all pathfinding algorithms throughout this
thesis, will be presented.

The task of the open list is to store nodes with their according priority key values. The
open list has to be accessed multiple times during each expansion of a node for removing the
current node, and adding new ones. Additionally, the node with the lowest priority key has to
be determined frequently to know which node will be expanded next. Therefore, the open list
should be implemented in a way which allows for fast deletion, addition, lookup, and sorting.
Hereby it is important to keep in mind that the priority key can consist of one or two values,
depending on the algorithm.

In a first iteration a Dictionary<TKey, TValue> class was used for the open list, with the
dictionaries’ key being the node (of type Node) and the dictionaries value being the node’s
priority key (of type double or double[]).

Dictionary<Node, double> (A*-based)
Dictionary<Node, double[]> (D*-based)

One of the main issues using a dictionary as an open list is sorting it. Since the list has to
be sorted by the dictionary’s values, and not by its keys, a SortedDictionary<TKey, TValue>
class was not an option. After testing different options, it was eventually decided that instead
of sorting the complete open list and taking the top item, the list would remain in an unsorted
state and the node with the lowest priority key would be determined by iterating over the
whole list and comparing the current key with the so far lowest one found. This method of

52

Implementation

implementation makes the performance of the open list dependent on its length. To increase
the list’s performance, and thereby reduce the runtime of the algorithm, it was decided not to
add nodes with a priority key of infinite to the open list.

Since adding and removing items from a dictionary, as well as finding the next node by iterating
over the complete list is too expensive, later in the development the open list was implemented
using the “High-Speed-Priority-Queue-for-C-Sharp” published by BlueRaja on GitHub [Blu19].
Using this priority queue two options are available: a “SimplePriorityQueue” and a
“FastPriorityQueue”. For details on the difference between both queues refer to [Blu19]. Since
the “SimplePriorityQueue” did not show much improvement in comparison to the dictionary, the
“FastPriorityQueue” is used for this thesis. This priority queue stores a priority for each item
on the list. Hereby the priority queue internally implements a sorting algorithm, sorting the
list each time an item is enqueued or dequeued. Implementing the open list for A* utilizing the
fast priority queue instead of the previously used dictionary, showed a significant improvement
of the algorithm’s runtime. Therefore, the same implementation was also applied to be the final
version of the open list for all other A*-based algorithms.

Using the fast priority queue for the implementation of the open list in D*-based algorithms, is
not as straight forward, though. The downside to using the fast priority queue is, that only one
value can be assigned as a priority. As much as that is not an issue with A*-based algorithms,
a workaround had to be developed to use the same priority queue as an open list for D*-based
algorithms. Therefore, it was decided that the open list would only store the first value (primary
key) of D*-based algorithms’ priority key. The second value is stored as a parameter in the node
and updated each time the node’s priority changes. Since the primary key is always compared
first and the secondary key only needed if two primary keys are equal, it is more important to
implement a fast comparison and sorting of the primary key, than of the secondary key. Testing
has shown this implementation of the open list to be faster than the previously used dictionary
and was therefore implemented in all D*-based algorithms.

The closed list stores all node, that have already been expanded. It does not need to store a
priority key for its entries and it does not have to be sorted at any point. The main requirement
for the closed list is to look up its entries fast, so it can be determined if a node has already been
expanded, before it gets added to the open list. Fulfilling all this requirement, a HashSet<T>
class is used for the implementation of the closed list.

A HashSet<T> is also used for the implementation of the incons list. It is not necessary to
store a node’s priority key in the incons list, because before each run of the algorithms, utilizing
this list, the incons list is added to the open list and the priority key of each node in the open
list is updated.

53

Implementation

Please note; all lists were optimized up to a point where they work fairly well for the given test
environment. There might be more suitable implementations, but to explore all these would go
beyond the scope of this bachelor’s thesis. If one were to optimize these pathfinding algorithms,
reconsidering and potentially optimizing the lists, especially the open list, might be a good
starting point.

4.3.1.3 Heuristic

To ensure the algorithms find the shortest path, the right focussing heuristic must be chosen.
As explained in 2.2.1 at the example of A* the heuristic has to be admissible and consistent in
order for A* to be optimal. Additionally, the chosen heuristic should work well in the cell-grid
setup of the search graph as well as when defining the search graph using waypoints.

Requiring the heuristic to work in both search graph setups excludes some of the more common
option, such as using a 3-dimensional version of the Manhattan Distance, since these would only
work in the cell-grid setup. Instead it was decided to use a Euclidian Distance [Pat19]. Each
node’s heuristic is the straight-line distance between the node’s position and the algorithm’s
destination. For A*-based algorithms this means the distance between the node and the
goal node, for D*-base algorithms the distance between the node and the start node. For
all algorithms this heuristic can be inflated by a factor ε > 1.

To avoid the recalculation each node’s heuristic each time the node is accessed, the heuristic,
as well as the inflated heuristic, is pre-calculated and stored by each node. It is important to
store both, the non-inflated and the inflated, heuristic, due to AD* requiring one or the other
depending on a node’s consistency when calculating its key priority value. Depending on each
pathfinding algorithm individually both heuristics get recalculated when the start or goal node
changes, the inflation factor in- or decreases, or the algorithm has to be reset.

Having considered implementation decisions relevant for all, or most, pathfinding algorithms,
following the implementation process of each algorithm is discussed briefly with regard to its
specific characteristics.

54

Implementation

4.3.2 A*-based

A*-based algorithms include A*, ARA*, and Theta*. They are all non-dynamic algorithms. This
means they can not use results from previous computations to adapt to a changed search graph.
Therefore, they have to be reset and recalculated from scratch each time the dynamic game
environment changes. Resetting the algorithms mainly includes clearing all lists, determining a
new start node and goal node, as well as updating the non-inflated and inflated heuristic.

Whilst computing the shortest path each node stores its parent node upon being added to the
open list. Should the priority key value of a node be updated, its parent is updated accordingly.
This is done so the shortest path from the goal node to the start node, henceforth referred to
as “corridor”, can be determined as described in 4.4.4.

4.3.2.1 A*

The A* algorithm is implemented following its description in 2.2.1 Due to its rather simple core
functionality it is the most straight forward to implement and the developer can be most certain
that its calculated results are correct. Therefore, in the development process of this thesis it
functioned as a reference to all other algorithms, comparing their calculations to the ones of A*
to check their plausibility.

Additionally, A* with an inflation factor of ε = 1 initially had the longest runtime and therefore
was used to test all optimization options, such as using the fast priority queue as an open list,
since the impact of these optimizations was the more noticeable the greater the runtime of an
algorithm was.

In Figure 42 the corridor found by A* is drawn as the yellow line. Figure 42 (i) and (ii) show
the corridor found in a cell-grid search graph, Figure 42 (iii) and (iv) in a search graph using
waypoints. As one can see clearly at the example of the waypoint search graph, the drawn
corridor does not start exactly at the pathfinding AI’s position and does not end exactly at the
destination. This is due to the pathfinding algorithm only providing a corridor from the start
node to the goal node, which are not necessary exactly at the same position as the AI’s position
and the destination. The method of determining the start node and goal node is described in
4.4.3.

55

Implementation

(i) (ii)

(iii) (iv)

Figure 42: A* corridor (top: cell-grid; bottom: waypoints)

4.3.2.2 ARA*

ARA* builds upon A* and was mainly implemented as described in 2.2.2.

The developer can choose a starting inflation factor ε0 > 1 and a decrease step δ > 0 before
starting the pathfinding system. ε will then be set to ε = max(1, ε − δ) at each run of the
algorithm. To adjust for the changed ε, the inflated heuristic gets updated each time before the
open list is resorted. Upon detecting changes in the search graph, the complete algorithm has
to be reset and recalculated from scratch and ε is reset to ε0.

56

Implementation

Figure 42 shows the different paths found by ARA* with ε0 = 3 and δ = 0.2 in a cell-grid search
graph. Hereby the orange-brown line is the one with the largest ε and the green line is the
shortest path. Seemingly blurred lines in the right image are merely corridors laying together
very closely.

Figure 43: ARA* corridor (cell-gird)

Implementing and testing ARA* in this test environment led to the observation that the initially
found path gets redrawn a few times whilst ε decreases. A new shortest path is only found once
ε gets closer to 1. For the example in Figure 43 this means, that the orange-brown line is the
corridor found with ε = 2, which is the same as the corridor found with ε = 3 = ε0 and overlays
all previously drawn corridors.

4.3.2.3 Theta*

Theta* is also based on A* and mainly implemented as described in 2.2.3. Unlike A* and ARA*,
Theta* is not implemented to run in a background thread, but runs in a coroutine instead. The
reason for this is that Theta* relies on line-of-sight checks in order to be able to find shortest
paths, which are not restricted to the cell-grid or the connections between waypoints. These
line-of-sight checks use Unity’s physics and therefore can not be accessed from the background
thread.

Initially line-of-sight checks between two nodes n and n′ were run by using Unity’s
Physics.SphereCast method [Uni19c]. This method casts a sphere with a given radius along
a ray from n to n′ and returns which obstacles have been hit on the way. If no hits are returned,
one knows that there is a line-of-sight between n and n′. Testing has shown that due to the
great number the line-of-sight checks having to be run, simply implementing Physics.SphereCast

57

Implementation

is too expensive. Therefore, a second method called Physics.Raycast [Uni19b] is run first.
Physics.Raycast casts a ray from n to n′ and returns information if any obstacles have been
hit on the way. Doing so it does not consider the radius of the player, though, and therefore is
less expensive than the SphereCast. Only if the Raycast determines that there might be a free
path from n to n′, the SphereCast is called to ensure the path is wide enough for the player to
pass.

Since both, Physics.SphereCast and Physics.Raycast, are part of the Unity API, these methods
can not be called from the background thread. Theta* is therefore implemented using a
coroutine. As discussed earlier, using coroutines and pausing the algorithm at the end of each
while-loop iteration, is not ideal. To decrease the runtime of the algorithm it was decided, that
it is not necessary to pause the algorithm after each iteration, since this would waste quite a
lot of resources given the simplicity of the test environment and overall game functionalities.
Instead, the algorithm is only paused after a cluster of iterations. The size of these clusters
should be chosen in a way that a minimum framerate of 30 FPS (60 FPS would be ideal) can be
achieved. Since the optimal size of the clusters is reliant on the size of the search graph as well
as the overall game functionalities, it needs to be adjusted for each game scenario individually.
For the test environment used in this thesis and working with a cell-grid search graph, each
cluster contains of about 1160 iterations. This results in the algorithm taking about 20 frames
to finish its computation, whilst maintaining an average framerate of just under 60 FPS.

For future development it would be necessary to implement a line-of-sight check, which is not
reliant upon Unity’s physics and therefore can be called in a background thread. This would
make the algorithm a lot more adaptable and easier to use in different game environments.

Despite this Unity-related downside of the algorithm, it is a very promising pathfinding algorithm.
It finds significantly shorter paths than all other algorithms and it expands fewer nodes than A*,
which should make it faster than A*, if they were both implemented in the background thread.

Figure 44 shows the corridor found by Theta* in a cell-grid search graph. It is obvious, that it
is not restricted to the cell-grid, like the other implemented algorithms.

58

Implementation

Figure 44: Theta* corridor (cell-grid)

4.3.3 D*-based

D*-based algorithms include D* Lite and AD*. These algorithms are dynamic algorithms and
therefore can adapt to changed path costs in the search graph by reusing previous calculations
to change their found shortest path. To achieve this they store a list of changed nodes which
gets added to whilst the algorithm runs and gets cleared once the algorithm updates all changed
nodes stored in that list. D*-based algorithms get reset upon the pathfinding AI colliding with
an obstacle or reaching its destination. Additionally, D*-based algorithms have to be reset once
any node in the search graph change its neighbours, as is the case when using waypoints (see
4.4.1), and when a new node is defined as the goal node. In addition to g-values, which are also
used by A*-base algorithms, D*-based algorithms use rhs-values. Both values are set to infinite
at the beginning of the pathfinding process and when the algorithm is reset.

D*-based algorithms use so-called successors and predecessors for their calculations. Successors
are equivalent to the neighbours used in A*-based algorithms. For consistent denomination,
successors will henceforth be called neighbours.

59

Implementation

4.3.3.1 D* Lite

D* Lite is mostly implemented following its description in 2.2.5.

As stated in 2.2.5 a node’s rhs-value is defined as:

rhs(n) = minn′∈Succ(n)(g(n′) + c(n, n′)) [Cho10]

To optimize this calculation, it is not necessary to calculate the rhs-value based on all successors
first and then take the minimum value. Instead a rhs-value needs only be calculated based on
a successor, if the successors g-value is lower than the currently lowest rhs-value.

Another optimization is implemented for expanding under-consistent nodes. When
under-consistent nodes are expanded their g-value is set to infinite and their own rhs-values, as
well as all their predecessors’ rhs-values, get updated. Since a predecessor’s rhs-value is only
going to change if it was reliant on the under-consistent node, it is not necessary to update
all predecessors, but only those, whose rhs-value were based on the under-consistent node. To
implement this optimization, each node’s parent is stored and when expanding under-consistent
nodes only predecessors, whose parent is the currently expanded node, get updated. This
optimization is also suggested in [KL02b] chapter 5.1.

In addition to these optimizations a change is made to the initial version of D* Lite regarding
the calculation of the priority key value. As described in 2.2.5 the key value is calculated as:

k(n) = [min(g(n), rhs(n)) + h(nstart, n) + km; min(g(n), rhs(n))][KL02c]

Unfortunately, this does not allow the use of an inflation factor ε > 1. Due to the inflation factor,
under-consistent nodes which get inserted into the open list after the search graph has been
changed do not have a high enough priority. Therefore, the algorithm’s termination condition
is met too soon and the necessary nodes are not expanded. To avoid this issue, it was decided
to calculate the priority key value the same way it is calculated in AD*. It is now calculated as:

k(n) =

[rhs(n) + ε ∗ h(nstart, n); rhs(n)], if n is over-consistent

[g(n) + h(nstart, n); g(n)], if n is under-consisten
[LF+05]

Figure 45 shows the corridors drawn by using D* Lite with an inflation factor ε = 2. In Figure
46 the size of the obstacle marked by a red circle in Figure 45 has been changed and is now
blocking the previously found path. Figure 46 (i) demonstrates the corridor found by the next
run of the algorithm using the initial method of calculating the priority key. It is noticeable
that it does not reach the goal node. Figure 46 (ii) shows the use of the adjusted key.

60

Implementation

Figure 45: D* Lite with ε = 2 corridor (gell-grid)

(i) (ii)

Figure 46: D* Lite with ε = 2 (cell-gird)

61

Implementation

4.3.3.2 AD*

AD* is implemented following its description in 2.2.7. It combines features of ARA* with D*
Lite. As with ARA*, the developer can choose a starting inflation factor ε0 and a decrease step
δ. Upon detecting changes, ε gets reset to ε0, otherwise ε = max(1, ε− δ). Additionally, AD*
implements all optimizations described for D* Lite in 4.3.3.1.

Figure 47 shows all corridors found by AD* with ε0 = 3 and δ = 0.2. The light-blue line shows
the shortest path found with ε = 1.

Figure 47: AD* corridor (cell-grid)

62

Implementation

4.4 Overall process of dynamic pathfinding
As described in the previous chapter, all implementations of pathfinding algorithms in this thesis
are prepared to react to changes in the game environment and therefore to changes in the search
graph. Whether this is realised by resetting and recalculating the algorithm from scratch, as is
the case with A*-based algorithms, or by them reacting to these changes by reusing results from
previous calculations to find the new shortest path, as is the case with D*-based algorithms.
The following chapter starts by discussing the process of updating the search graph to represent
the changed game environment. Following, the interrelation of the changing game environment
and the adaption of the pathfinding algorithms to it will be looked at further. The chapter will
conclude by describing the movement of the AI through the game environment and the process
of determining the pathfinding algorithms’ start node and goal node.

4.4.1 Updating the search graph

For the pathfinding algorithms to react to changes in the game environment, these changes have
to be translated to changes in the search graph first.

One decision to make hereby is, when the search graph should be updated and what changes it
should react to. If one would work with only a few moving obstacles, or with obstacles moving
irregularly or in very different speeds, it might make sense to only update the search graph
when obstacles have moved a certain distance and only update those parts of the search graph
which contain certain moving obstacles. This is not the case in the test environment of this
thesis, though. Here all moving obstacles are moving constantly and roughly at the same speed.
Therefore, it was decided to update the search graph in intervals. Each interval the complete
search graph is updated. The interval time can be chosen by the developer, but is at least as
long as the time required for an update of the search graph.

The main purpose of updating the search graph is to determine changes in path costs between
nodes. Doing so, it has to be differentiated between a cell-grid search graph and the search graph
based on waypoints. Grid cells do not change their position; their neighbours and predecessors
always stay the same. Path costs can only change when nodes change their free/blocked status,
hereby changing the path costs to the size of the cell, or to infinite. Any node changing its
free/blocked status or being the neighbour of a cell changing its free/blocked status recalculates
the path cost to all its neighbours and is then defined as having “changed”. Waypoints,
unlike cells, are moving constantly; in addition to their free/blocked status changing also their
indirect neighbours and their indirect predecessors might change. Also, it is possible for a
moving obstacle to now block the line-of-sight between two direct neighbours, setting the path
cost of this connection to infinite. Therefore, all nodes have to recalculate the path cost to

63

Implementation

all of their direct neighbours. Should any node detect any changed path costs to any of its
direct neighbours, it is then defined as “changed”. Also, all nodes changing the distance to
any of their indirect neighbours or getting assigned a new indirect neighbour, recalculate the
path cost to their changed indirect neighbour and are defined as “changed”. Since updating the
waypoint-based search graph requires multiple frames, it is possible for a dynamic obstacle to
change its position during this time, rendering the updated search graph invalid. To avoid this
issue, each moving obstacle creates a copy of itself, like a “shadow-self”, which is then used as
the basis for updating the waypoint-based search graph. The “shadow-self’s” position gets set
to the obstacles position before the search graph starts its recalculations and does not move
during the updating process. As this copy is only a “shadow” the AI does not collide with it.

Since assigning new indirect neighbours changes the structure of the search graph, the previous
calculations of D*-based algorithms become invalid and these algorithms have to be reset each
time the game environment changes.

In both search graphs all “changed” nodes get stored in a list, which is used to inform the
algorithm about which nodes have been changed.

Unfortunately, updating the search graph in both setups is reliant on Unity’s physics, for example
to determine whether a node is blocked or not. Therefore, it can not be implemented on a
background thread, but has to use a combination of coroutines, causing the update to be spread
over multiple frames. During this time the overall setup of the search graph is not valid, due to
missing information about path costs or temporarily removed connections between waypoints.

To avoid any pathfinding algorithm calculating with an invalid search graph, multiple search
graphs are stored. Since the information about the setup of a search graph is stored in each
node’s information about its position, its neighbours and predecessors, and the path costs to all
its neighbours, multiple sets of these values are stored in each node. The first set is only used
in the background by the search graph. The values in this set are the most up-to-date ones and
are used and changed when updating the search graph. Since these values may form an invalid
search graph at times, the pathfinding algorithm does not have access to them. The second set of
values can be seen as a copy, or snapshot, of the last valid search graph. These snapshot-values
are updated each time the search graph has finished an update. Due to grid cells never changing
their position, neighbours, and predecessors, the corresponding snapshot-values do not have to
be updated, when using a cell-grid. Also, only values of changed nodes have to be updated.
Storing this second set of information, a valid search graph is available at all times, even when
the search graph is currently being updated.

Testing has shown that updating the search graph using coroutines is quite time costly. To reduce
the update time as much as possible, coroutines were implemented using a similar method of
clustering the calculations, as is emphasized for the implementation of Theta* (see 4.3.2.3).

64

Implementation

4.4.2 Recalculating the path

Once the search graph has been updated and a new snapshot is available, an event is triggered
relaying information about which nodes have been changed to the pathfinding algorithm. Due
to the runtime of the algorithms and dependent on the chosen interval-time for updating the
search graph, it is possible for the search graph to update multiple times, whilst the algorithm
is running once.

This fact has to be considered carefully when deciding which search graph information the
pathfinding algorithm must use for its calculations. Since it is possible for the snapshot to be
updated whilst the algorithm is running, this set of values can not be used. Instead, it was
decided to create a third set of values, called “public” values. There is no relation between
this naming and the values’ access modifiers. Rather they are called “public” because they are
publicly available to the pathfinding algorithm and ultimately will be used for all computations
regarding the pathfinding process. “Public” values are created by copying, also referred to as
“publishing”, the current snapshot. Creating this last set of values is necessary to completely
decouple the pathfinding process from the process of updating the search graph. This allows the
search graph to be updated multiple times, taking a new snapshot after each update, without
influencing the currently computing pathfinding algorithm. Similar to taking a snapshot (see
4.4.1) only values of changed nodes have to be published, and when using a cell-grid search
graph only the path costs have to be published. The process of publishing the latest snapshot
is run on the background thread with the rest of the pathfinding algorithm.

Additionally, the possibility of multiple search graph updates during one run of the algorithm
has to be considered when managing information about changed nodes. The algorithm might not
be able to react to the latest changes, before a new event with information about new changes
is triggered. Therefore, it was decided to store incoming information about changed nodes and,
if necessary, add it up, until the pathfinding algorithm finishes its current calculations and is
ready to react to changes. Once this is the case, each algorithm reacts to all changes accordingly,
as described in 2.2 and 4.3, and then computes the next shortest path using the nodes’ public
values.

4.4.3 Determine start and goal node

Throughout the description of all pathfinding algorithms it was always assumed the start and
goal node were known to the algorithm. In order for the algorithm to know the optimal start and
goal node, these have to be re-determined frequently to account for the AI and the destination
moving. In this implementation of pathfinding system, the start node gets re-determined before
each run of an algorithm and the goal node gets re-determined each time the algorithm reacts

65

Implementation

to changes in the search graph. Since D*-based algorithms’ computations from previous runs
are based on a certain goal node, these algorithms have to be reset should a different node be
defined as the goal node.

The goal node is defined to be the node closest to the destination’s current position. To ensure
that the algorithm can run on the background thread, finding the closest node can not include
any of Unity’s physics. For the cell-grid search graph the closest node, and thereby the goal
node, is found by determining which grid cell currently contains the destination’s position. In the
waypoint-based search graph the closest node is found by measuring the distance in a straight
line to all waypoints in the search graph and determining the closest one. Even though this
method guarantees the goal node to be the closest one to the destination’s current position, in
theory it can not be guaranteed that there is an unobstructed line-of-sight between them. So far,
this downside has not shown any difficulties in its practical application, though. Nevertheless,
improving this function would be another reason speaking for the development of a non-physics
reliant line-of-sight check.

Similar to the goal node, the start node could be defined as the closest node to the AI’s current
position. This method of determining the start node is only used for the first run and after
resetting the pathfinding algorithm, though. At all other times the start node is determined by
making a rough prediction where the pathfinding AI’s position will be by the time the algorithm
has finished its calculations. This prediction is necessary due to the AI constantly following its
last known corridor, also during the algorithm being recalculated. If one were to use the AI’s
current position to determine the start node for the next calculation of the pathfinding algorithm,
the AI would have already moved on by the time the algorithm finishes its calculations and would
have to move backwards to reach the start node of the new corridor. Since the AI follows the
last found corridor, one could be able to predict the node on the corridor, that the AI is walking
towards by the time the algorithm finished its calculations and take that node as the algorithms
start node. This would result in the AI moving fluently without ever backtracking to reach its
new starting position. Unfortunately, this method requires the knowledge of the exact runtime
of the pathfinding algorithm, which is not easily predictable, due to its dependency on the search
graph, the AI’s distance to the destination, the current inflation factor, and many more factors.
As a compromise, in this thesis the start node is defined to either be the next node on the current
corridor, which the pathfinding AI is heading towards, or the node after that. The backtracking
caused by this inaccurate prediction can be minimized by using inflation factors to reduce the
algorithm’s runtime, when using A*, Theta*, and D* Lite. Using the anytime-algorithms ARA*
and AD*, the runtime increases once ε gets close to 1, causing the AI to backtrack. This could
be avoided by terminating the algorithm when a certain ε is reached, even if the sub-optimality
bound is not yet 1 at this point. If, and when, to terminate the algorithm would need to be

66

Implementation

determined for each game scenario individually by extensive testing. Testing for the object
constellation in test environment as it is presented in Figure 43 has shown for example, that
using ARA* with ε0 = 3 and δ = 0.2 in a cell-grid search graph, the shortest path is already
determined with ε = 1.8.

A thinkable alternative to avoid the inaccurate prediction of the next start node, would be to
run the pathfinding algorithm first and to then compare the old corridor to the new one. Using
this method the path the AI has to take to transition from the old corridor to the new one,
without having to backtrack, could be determined. This option was carefully considered to be
implemented in this bachelor’s thesis but was dismissed due to the transition proving to be more
complex than initially assumed.

For most algorithms implemented in this thesis, choosing the next corridor-node, which the AI
is currently heading towards, as the next start node has shown good results and was therefore
implemented. Due to dynamic obstacles moving into the current corridor, two optimizations
were also added.

The first optimization was made due to the possibility, that the next corridor-node might have
become blocked during the last update of the search graph and therefore is not a valid start node.
Should this node be blocked, the start node is defined by finding the closest node to the AI’s
current position, as described above. In the case of using a cell-grid search graph, it is possible
that also the closest node is blocked. Should this be the case, it is determined whether any of
its neighbours are free and thereby a valid start node. Even though checking the neighbour of
the closest node might lead the AI to move diagonally in the cell-grid, it has shown to improve
the success rate of the AI reaching its destination.

A second optimization is regarding finding the next start node when using Theta*. Since Theta*
is not restricted to connections between nodes, it is possible for the nodes in the corridor to be
further apart. Whilst the AI is traversing from its current position to the next corridor-node,
which is also the start node for the next run of the algorithm, it can not be controlled and
therefore can not change its direction. The greater the distance between two corridor-nodes and
therefore the greater the distance the AI has to travel without being controlled, the more likely
it is for a moving obstacle to move into the AI’s path and block it. Therefore, Theta* only
takes the next corridor-node as the start node for its next calculation, if there is a line-of-sight
between the AI’s current position and that node. Should this not be the case, a new start node
is determined by finding the closest node to the AI’s current position, as described above.

67

Implementation

4.4.4 Movement of the AI

Once the pathfinding algorithm terminates successfully, the found solution has to be translated
into a walkable path the AI can follow.

Primarily the AI follows the so-called corridor. The corridor is a list of nodes, that describes
the shortest path from a given start node to a given goal node, through the search graph. In the
case of A*-based algorithms, the corridor is traced by starting at the goal node and following
each node’s parent until the start node is reached. For D*-based algorithm one starts at a start
node n and determines the next node n′ as

n′ = minn′∈Succ(n)(g(n)′ + c(n, n′)) [KL02c]

until the goal node is reached. As a last step the pathfinding algorithm informs the pathfinding
AI’s controller, that a new corridor is available.

Receiving a new corridor, the AI first has to move from its current position to the start node
of the corridor. It then moves along the corridor until the goal node is reached or it collides
with an obstacle. The AI walks along the corridor by always removing its first node and aiming
towards that node’s position. Once it reaches this position, it discards this one and aims towards
the next node in the corridor. When the AI reaches the goal node it ensures that there is a
line-of-sight between its current position and its destination. If this is the case, it moves in a
straight line to its destination and gets reset upon reaching it. The AI also resets upon collision
with obstacles and informs the pathfinding algorithm, that it has to reset, as well.

Initial tests showed, that the AI had a very low success rate of reaching its destination because
of collisions with dynamic obstacles, regardless of the used pathfinding algorithm. The main
cause was the obstacles moving into the AI, before the search graph had finished its update.
To decrease this risk of collision it was tried to force the algorithm to find paths, which have a
“safety distance” to any moving obstacles, especially in the direction of their movement.

In the case of using a cell-grid search graph this was achieved by assigning each moving obstacle
a second collider, slightly larger than its first, and especially stretched in the direction of the
obstacle’s movement. The second collider is taken into account when updating the search graph,
marking additional nodes around the obstacle as blocked, but does not affect the AI. Even though
this method of implementation might increase the path length by forcing paths to leave extra
space to moving obstacles, it increases the success rate of the AI significantly. Therefore, it was
decided to implement this method for all algorithms running on the cell-grid search graph.

A similar approach was tested in the waypoint-based search graph, creating nodes in greater
distance to their object. This did not show any improvement, though, and was therefore not

68

Implementation

implemented in the final version.

Additionally, the behaviour of the appearing and disappearing obstacles (light blue) was altered,
so they can only change their status, when the AI is not near them.

69

5 Comparison

After all pathfinding algorithms have been implemented, in this chapter they will be tested and
compared in two steps using the abstract test environment described in 4.1.2. To assess each
algorithms’ performance the main criteria are the length of its found paths, the total distance
the AI travels from its start point to its destination, and the number of expanded nodes. As a
third factor the time required for computing the shortest path is considered.

In both comparison-steps each algorithm is tested in the cell-gird search graph, as well as the
waypoint-based one. A*, Theta*, and D* Lite are run with an inflation factor of ε = 1 and
ε = 2. ARA* and AD* are run with a start inflation factor ε0 = 3 and a decrease factor δ = 0.2
and δ = 0.4. The interval time between updating the search graph is set to zero. This means,
the search graph re-starts updating as soon as it finishes its last update.

All testing and comparison was done using a Predator Helios 300 Laptop by Acer, with a Nvidia
GeForce GTX 1060 graphics card and an intel core i7 processor.

5.1 Static AI and destination
The first step in testing and comparison aims at getting a first impression of each algorithm’s
performance without factoring in any external variance, such as a decreasing path length due
to the AI moving towards its destination. Therefore, in this stage all dynamic obstacles in the
test environment are moving, but the AI and the destination are static.

The following figure shows the average value for each algorithm’s path length, number of
expanded nodes, and time needed for computation, in the cell-grid search space (left) and
waypoint search graph (right). Each diagram displays the respective values of each algorithm
in the form of a bar chart. Each chart is split into a left and right group. The left group
represents the non-anytime algorithms with an inflation factor ε = 1, and the anytime algorithms
with a start inflation factor ε0 = 3 and a decrease factor δ = 0.2. The right group in each
diagram represents the algorithms with an inflation factor of ε = 2, or with a decrease factor of
δ = 0.4 respectively. Path lengths used for calculating the average of non-anytime algorithms
are defined as the length of the current corridor from its start node to its goal node. Since
anytime-algorithms can find multiple paths whilst their ε is decreasing the corridor found last
before ε is reset, either due to resetting or reacting to changes in the search graph, is used for
calculating the average path length. In addition, the number of expanded nodes and the time
required for calculations are each cumulated throughout the decrease of ε, and all cumulated

70

Comparison

values are used for determining the average. For larger printed diagrams see Figure 58 to Figure
63 in the Appendix.

Figure 48: Comparison of path length, expanded nodes, and computation time in a cell-grid and waypoint-based
search graph

Starting at the top of Figure 48, the first line shows the average path lengths found by each
algorithm in the cell-grid search graph (left) and in the waypoint-based search-graph (right). It
can be seen, that the path-length differs slightly between the two search-graph setups, whereby
most algorithms find shorter paths in the cell-grid setup. For example, A* with ε = 1 finds an

71

Comparison

average shortest path of 130.28 units in the cell-grid and an average shortest path of 144.126
units in a waypoint-based setup. The only exception to this is Theta*, which produces almost
identical path lengths in both search graphs. Given the path length is measured from the start
node to the goal node of a corridor, it is not necessarily the exact distance the AI would have to
travel from its current position to its destination. For a more accurate comparison the difference
of finding start and goal nodes in both graphs should therefore be considered. As described in
4.3.2.1 and as can be seen in Figure 42, the start node and goal node are mostly closer to the
current AI’s and destination’s position in a cell-grid setup, than in the waypoint search graph.
Therefore, given equally long measured path length, the cell-grid search space in most cases
produces shorter actually travelled distances of the AI.

Comparing average path lengths of all algorithms utilizing two different inflation factors ε, and
respectively two different decrease factors δ, Figure 48 (i) and (ii) also show rather small variance
in path lengths with varying factors. Hereby the variance is greater in a waypoint setup of the
search graph than when utilizing a cell-grid. A*, for example, only increases its path length
from 144.126 units to 152.316 units in this setup (see Figure 48 (ii)).

Moreover, given the same search graph, most algorithms find path lengths in close proximity to
each other. The main exception hereof is again Theta*, which finds significantly shorter path
lengths than any other algorithm. For example, in a cell-grid search space using an inflation
factor ε = 1 A*’s average shortest path is 130.28 units, whereas Theta*’s average shortest path
is 98.28 units.

Next, the number of expanded nodes, see Figure 48 (iii) and (iv), and the time required by
each algorithm to complete its computations, see Figure 48 (v) and (vi), are assessed. Firstly, it
should be noted that the waypoint-based search graph in its setup used for testing in this thesis
consists of 2062 nodes, whereas the cell-grid consists of 57344 nodes. This difference reflects
in the number of expanded nodes and therefore also in the time needed for computation. The
maximum average number of nodes expanded by any algorithm in the cell-grid is 29141.04, more
than ten times the maximum average number of nodes expanded in the waypoint search graph,
which is only 2168.02.

Analysing Figure 48 (iii) and (v) one can see some of the algorithms’ characteristics described
in previous chapters quite clearly. For one A*, Theta*, and D* Lite expand significantly fewer
nodes utilizing an inflation factor ε = 2 than with ε = 1. Secondly, Theta* inflates significantly
fewer nodes than A* given ε = 1, even though they share most of their basic setup except for
calculating the g-value and setting parent nodes. Nonetheless Theta* still does take longer to
complete its computations than A* (see Figure 48 (v)), due to it being implemented in coroutines
instead of a background thread. It should also be noted, that the dynamic algorithms D* Lite

72

Comparison

and AD* expand less nodes than their non-dynamic counter-parts A* and ARA*, regardless of
the inflation or decrease factor.

Since nodes in the waypoint-based search graph get reassigned new neighbours frequently, as
described in 4.3.3 and 4.4.1, dynamic algorithms have to be reset too often in this setup.
Therefore, they also do not expand fewer nodes than their non-dynamic counter-parts (see
Figure 48 (iv)). This is in turn reflected by the computation time required by each algorithm
shown in Figure 48 (vi). Here the dynamic algorithms take longer to find a shortest path than
the non-dynamic algorithm A* and ARA*.

In conclusion, the cell-grid search graph results in overall shorter path lengths, but also requires
algorithms to expand more nodes and spent more time on computations than in a waypoint-based
search graph. Moreover, dynamic algorithms perform well in the cell-grid setup and for a
waypoint-based search graph non-dynamic algorithm, such as A* with ε = 2 have shown to
expand fewer nodes and require little computation time. Theta* is an interesting algorithm,
due to its short path lengths and low number of expanded nodes. Its extensive computation
time might impact the end-result of the pathfinding system negatively, though, and therefore
has to be observed over the course of further testing and comparison. Lastly, the average number
of nodes expanded by the anytime-algorithms ARA* and AD* in both search graph setups, as
shown in Figure 48 (iii) and (iv), varies slightly with the use of different decrease factors δ and
mostly tends to expand more nodes when using δ = 0.2.

5.2 Fully dynamic
So far, all testing and comparison has been done in a setup of the abstract test environment,
where only the dynamic obstacles are moving, but the AI and the destination are static. In
this next step these are made dynamic, too. Hereby the destination follows a pre-defined path
travelling along the y-Axis (in other words, up and down) at the left side of the environment.
To avoid an infinite chase of the AI and the destination, it has to be ensured the AI is allowed
to move faster than the destination. Additionally, all dynamic obstacles also move slower than
the AI. Doing so ensures that the AI theoretically is able to avoid collision with obstacles by
moving away from them without them catching up.

Being the most decisive factor in choosing a suitable pathfinding algorithm for a dynamic
game environment, the success rate of all algorithms tested in both search graph setups will
be compared first. Only those algorithms found possibly suitable will then be compared in more
detail by determining and comparing an average of the total distance the AI travels from its

73

Comparison

start point until it reaches its destination, an average of the total number of expanded nodes,
and an average of the total time required for computation of the algorithms.

Figure 49 shows the success rate of all algorithms in a cell-grid search graph (left) and a
waypoint-based search graph (right) in percent. The success rate results from the number
of successful runs of the AI relative to the total number of runs. Each run of the AI starts
with the AI being at its starting position and ends with the AI resetting. A run is defined as a
success, if the AI reaches its destination, otherwise it is failed. For larger printed diagrams see
Figure 64 and Figure 65 in the Appendix.

Figure 49: Comparison of success rate in cell-grid and waypoint-based search graph

The graphs in Figure 49 clearly show that the success rate of all algorithms is less than 40%
in a waypoint search graph. The highest success rate achieves Theta* with ε = 2, which lays
at 33.594%. Observing the behaviour of the AI moving along its corridor, it becomes clear
that most collisions were caused by the algorithm not being able to react to changes in the
game environment fast enough. Considering that previous comparisons have shown algorithms
to require significantly less computation time in a waypoint setup than in a cell-grid, one might
have expected the success rate shown in Figure 49 to be reverse. To understand what causes
the low success rate in the waypoint setup one should have another look at the computation
time required by the algorithm. Figure 50 shows variations of the graphs seen in Figure 48 (v)
and (vi). Here a red line is added, indicating the average time needed by the search graph to
complete its update and make a new search graph available to the pathfinding algorithm. In
the case of using a cell-grid search space, it takes about 282.15 milliseconds to complete the
updating process. The waypoint-based search graph takes 327.71 milliseconds to complete its
update. As one can see, updating the search graph requires a lot more time than computing the
algorithms, except for Theta* with ε = 1 in a cell-grid search graph. Therefore, the runtime of a
pathfinding algorithm is not necessarily the deciding factor on how well the pathfinding system
can react to changes in the game environment. To optimize the pathfinding system’s success

74

Comparison

rate, especially in the waypoint-based search graph, the priority should be to first optimize the
time needed for the search graph to update.

Figure 50: Comparison of computation time and search graph update time

Comparing the success rate of all algorithms in the cell-grid search graph, it can be seen that
non-dynamic algorithms are more successful when using an inflation factor of ε = 2 than when
running with ε = 1. Additionally, results shown in Figure 49 (i) indicate that the success rate
of Theta* is not significantly negatively impacted by its extensive computation time. Especially
with ε = 2 it is only little less successful than A* and even more successful than ARA* and
AD*.

Given the low success rate of the waypoint-based search graph update, this form of setup is not a
realistic option at this state of development and will be excluded from all following comparisons.
For statistics on algorithms’ performance in the waypoint search graph see Figure 72 to Figure
77 in the Appendix.

Next to having a high success rate, a suitable shortest path algorithm in a dynamic environment
should enable the AI to travel as short a distance from its start position to its destination
as possible. Figure 51 shows the average distance the AI travels in a fully dynamic game
environment utilizing a cell-grid search graph from its start position until it reaches its destination.
As before the distance is measured in Unity units and a larger print can be found as Figure 66
in the Appendix. In addition, graphs showing representative data-points of travelled distances
can be found in the Appendix, Figure 69.

One of the first noticeable observations is, that the AI travels a shorter distance when A*,
Theta*, and D* Lite are utilizing an inflation factor of ε = 2 than when they are not inflated.
For example, the average distance of A* with ε = 1 is 177.373 units, with ε = 2 it is 160.109
units. Given the measured results seen in Figure 48 (i) and the general tendency of a higher
inflation factor leading to greater path lengths, this result is surprising at first.

75

Comparison

Figure 51: Distance travelled in a cell-grid search graph

Observing the movement behavior of the AI in the dynamic environment it was concluded,
that this difference in path length is caused by the AI backtracking. As discussed in 4.4.3 the
AI is caused to backtrack to the start node of its new corridor, if this has not been predicted
correctly. The longer an algorithm requires to finish its computations, the more likely the AI is
to backtrack. As Figure 48 (v) shows, non-anytime algorithms are faster when using ε = 2 and
therefore the AI backtracks less, resulting in shorter travelled distances. In addition to causing
longer paths, backtracking also causes the AI’s movement to feel stuttering and increases the
likelihood of collisions with dynamic obstacles.

For further comparison the average total number of nodes expanded and the total time spent
on computing a pathfinding algorithm during a successful run of the AI are determined and
presented in Figure 52. For larger prints see Figure 67 and Figure 68 in the Appendix.
Additionally, Figure 70 and Figure 71 in the Appendix show representative data points of
measuring the total number of expanded nodes and total computation time.

Figure 52: Total number of expanded nodes and total computation time in a cell-grid search graph

76

Comparison

As expected based on previous observations, A*, Theta*, and D* Lite expand less nodes with
ε = 2 than with ε = 1, Theta* expands less nodes than A*, anytime algorithms expand more
nodes using δ = 0.2 then with δ = 0.4, and dynamic algorithms D* Lite and AD* expand fewer
nodes than their non-dynamic counter-parts. Due to the destination moving, a new goal node
has to be defined frequently, causing the dynamic algorithms to reset. Therefore, the difference
in expanded nodes between for example A* and D* Lite is not as significant as with the static
destination as seen in Figure 48 (iii). For comparison Figure 53 shows the total number of
expanded nodes in a setup, where all dynamic obstacles and the AI are moving, but the AI’s
destination is static. Here the goal node is consistent and the dynamic algorithms do not have
to be reset. As one can see in this setup the dynamic algorithms perform much better than in
an environment with a dynamic destination.

Figure 53: Total number of expanded nodes in a cell-grid search graph with static destination

Considering all factors, the success-rate, the travelled distance, the number of expanded nodes
and the time required for computation, two facts become clear. First, using an inflation factor
is necessary, and secondly the use of an anytime algorithm is not necessary. The first fact is
supported by Figure 49 (i) indicating a higher success rate, Figure 51 showing shorter travelled
distances, and Figure 52 illustrating less expanded nodes and lower computation time for A*,
Theta*, and D* Lite using ε = 2 compared to ε = 1. The same figures also show, that ARA*
and AD* do not have a higher success rate, do not enable the AI to travel shorter distances,
do not expand less nodes, or require less computation time than non-anytime algorithm using
ε = 2. The unexpectedly low success rate of these two algorithms is caused by the issue of
backtracking. Should this issue be resolved, their characteristic of finding a first solution very
fast might impact their success rate and travelled path length positively. Therefore, it can be
said, that for this fully dynamic test environment choosing A*, Theta* or D* Lite are the best
options.

77

Comparison

Table 1 shows a comparison of these algorithms listing all factors discussed in this chapter. To
gain a quick overview fields are highlighted in green, yellow, or red. Red indicates this value
ranking lowest, yellow middle, and green best.

Success rate Tavelled distance Expanded nodes Computation time

A* ε = 2 93.277 160.109 360037.395 3037.616

Theta* ε = 2 88.722 134.303 203758.367 8050.889

D* Lite ε = 2 91.367 180.144 129771.117 5987.049

Table 1: Comparison A*, Theta*, and D* Lite with ε = 2

In conclusion, using a cell-grid search graph and A* with an inflation factor of ε = 2 showed
the best results in the abstract test environment used in this thesis. Theta* and D* Lite are
also interesting candidates but do need further optimizations. Theta* does find shorter and
smoother-looking paths than any other algorithm, but has to be developed further so it can
be run in the background thread in order to be able to compete with those. D* Lite performs
well in dynamic environments with a static destination but has to be optimized to increase its
performance when reacting to a changed goal node.

This conclusion contradicts the expected results stated in 3.5. As expected, Theta* does produce
the best paths, but is currently not the best solution, due to its extensive computing time. Also,
AD* is not the optimal solution. The performance of anytime algorithms, such as AD*, is worth
reassessing once the issue of backtracking can be resolved.

78

6 Conclusion

At this point all algorithms have been implemented and compared. Initially it had been
planned to use the conclusions draw from the previous chapter to implement the most promising
pathfinding algorithm and search graph in the game “Lost in Space”, to test it in a real game
setup. Due to unexpected challenges developing and optimizing the search graphs, especially
the waypoint-based one, and optimizing the implementation-details of the algorithms, this last
step can not be performed in the scope of this bachelor’s thesis. Therefore, this final chapter
will conclude this thesis by first giving a brief summary, then drawing conclusions from the
implementation and comparison of the pathfinding algorithms, and finally by looking ahead at
extensions and optimizations that could be performed on the existing results and the pathfinding
system in general.

6.1 Summary
The motivation for this bachelor’s thesis was to identify which algorithm is most suitable to be
implemented in the highly dynamic game environment of “Lost in Space”. To do so, multiple
pathfinding algorithms should be implemented and compared.

In the second chapter (2) of this thesis the game “Lost in Space” is introduced (2.1), and the
pathfinding algorithms A*, ARA*, Theta*, D*, D* Lite, Field D*, and AD* are explained on
a theoretical level (2.2). Additionally, already existent and commonly used pathfinding systems
in games and especially those available for the game engine Unity are presented (2.3).

The thesis then continues by drafting a concept for the project execution in chapter three
(3). Here it is also defined, that the algorithms A*, ARA*, Theta*, D* Lite, and AD*, are
implemented and compared in an abstract dynamic test environment using two different search
graph setups.

Chapter four (4) starts by describing the implementation of the game “Lost in Space” (4.1.1) and
the setup of the abstract test environment (4.1.2), followed by the development of the cell-grid
and waypoint search graph (4.2). Once the search graphs are set up, the implementation of
the pathfinding algorithms is presented (4.3). Here first overall implementation decisions are
discussed, including the use of a background thread, the design of the open, closed, and incons
list, and the chosen focussing heuristic. Afterwards the implementation process of each algorithm
is briefly discussed individually. Chapter four concludes by describing the overall process of the
pathfinding system adapting to changes in a dynamic game environment (4.4). This includes the

79

Conclusion

update of the search graph, the pathfinding algorithm managing and adapting to changes in the
search graph, determining new start and goal nodes, and moving the AI through the dynamic
game environment.

Finally all algorithms are tested and compared in chapter five (5). This comparison is done
in two steps; the first with a static AI and destination, the second in a fully dynamic test
environment. Mainly each algorithms’ path length, number of expanded nodes, time required
for computation, and the success rate of the AI reaching its destination is compared.

6.2 Conclusion
Throughout the process of implementing and comparing the pathfinding algorithms A*, ARA*,
Theta*, D* Lite, and AD* in a cell-grid and a waypoint-based search graph using an abstract
dynamic test environment, two main conclusions can be drawn.

First, using a waypoints-based search graph is not a realistic option at this stage of development.
The upside of the waypoint search graph is its low number of nodes. This causes the algorithms to
expand significantly fewer nodes than when using a cell-grid search graph, which is also reflected
in the required computation time of the algorithms. Moving the AI through the dynamic
environment, though, the highest success-rate reached is 33.594% by Theta* with ε = 2. The
main reason for collisions is the time required by the search graph to update. As this is far
higher than the time required by any algorithm, it is currently the limiting factor in lowering
the time the pathfinding systems need to react to changes in the environment. To improve the
success rate of a pathfinding system, optimizing the search graph, especially its update, should
be the first priority. Even though in a cell-grid search graph the difference in time between
updating the search graph and running the pathfinding algorithms is not as significant, in this
case too, optimizing the search graph is necessary to improve the AI’s success rate.

Secondly, at this stage of development A* with an inflation factor of ε = 2 is the most suitable
algorithm to be implemented in the abstract test environment using a cell-grid search graph. It
has a high-success rate, enables the AI to travel relatively short paths, and has a low computation
time. Another benefit of A* is its simplicity. It is easy to understand, implement, and maintain.

Other promising algorithms are Theta* and D* Lite. Theta* finds shorter paths then A*
and expands less nodes, but at this stage of development has a high computation time. D*
Lite expands fewer nodes than A* but also has a higher computation time. In its current
implementation it performs well in dynamic environments with a static destination but has to
be optimized further for optimal performance in a fully dynamic environment.

80

Conclusion

6.3 Remaining issues
Having finished the implementation of the search graphs and the pathfinding algorithms within
the scope of this thesis, a few issues remain.

The most noticeable is, that any functions utilizing Unity’s physics can not be called from the
background thread. This does not only affect Theta*, due its reliance on line-of-sight checks,
but also the updating of both search graphs and the determining of start and goal nodes in the
waypoint-based search graph.

Another issue is the occurrence of backtracking, which in the scope of this bachelor’s thesis is not
investigated further. At this stage of development, backtracking is merely avoided by increasing
the inflation factor of non-anytime algorithms. Backtracking does not only increase the path
the AI has to travel, but also makes the AI’s movement look staggering and increases the risk
of collision.

A third issue are very irregularly and seemingly randomly occurring frame drops. So far, testing
has shown these frame-drops to be caused by updating the search graph. As this issue does not
appear during every update and not even every time the pathfinding system is run, it is hard
to pinpoint the exact source of this issue.

6.4 Looking ahead
Concluding this bachelor’s thesis, this chapter will give a look-ahead on next steps and possibilities
of extending and optimizing this project in the future.

The most important next step would be to use the conclusions drawn from this thesis to
implement a pathfinding system in the game “Lost in Space”. The original plan to do so as
part of this bachelor’s thesis had to be cancelled, due to unexpected challenges occurring during
the development of the search graphs and the implementation of the pathfinding algorithms,
which therefore demanded significantly more development time than originally scheduled. When
implementing any pathfinding algorithm into an actual game environment, one should also
consider using a method of post-smoothing the found path to make it look smoother and more
natural.

Another interesting next step would be to optimize, or potentially even completely re-design, the
used search graphs. The cell-grid search graph used in this thesis has the upside of being simple to
understand, implement, and update. This simplicity comes at the cost of having a lot of nodes
in the search graph, which in a worst-case scenario all have to be expanded by pathfinding
algorithms. Therefore, optimizing the cell-grid search graph by lowering its number of cells

81

Conclusion

would most likely affect the performance of the pathfinding algorithms positively. To decrease
the number of nodes the implementation of a waypoint-based search graph was chosen in this
thesis. Even though this did decrease the number of expanded nodes and the computation time
of the algorithms significantly, it was not a successful solution. For future use of a waypoint-based
search graph the design proposed in this thesis has to either be re-worked or at least the updating
time significantly optimized to achieve a higher success rate.

Next to optimizing the updating time of the search graph, also the computation time of the
pathfinding algorithms has to be as low as possible to perform well in a highly dynamic game
environment. One possibility to decrease the computation time of all algorithms would be
to reassess the setup of the open list, especially in the case of D*-base algorithms. Also,
to improve the performance of D*-based algorithms in an all dynamic environment, which
includes a dynamic destination, optimizations, such as the use of Moving Target D* Lite,
presented by Xiacun Sun, William Yeoh, and Sven Koenig in [SYK10], should be considered. To
improve Theta* a line-of-sight check not reliant on Unity’s physics would have to be developed.
Additionally, testing has shown, that by restricting the anytime algorithms ARA* and AD* not
to decrease their ε until reaching 1, but only until 1.4, they backtrack less, and the AI moves
smoother. Of course, this way they are not guaranteed to find the optimal shortest path but
might have a sub-optimality of 1.4.

Thinking more generally a possible option to increase the pathfinding systems’ success rate
would be to enable them to make predictions about which position dynamic objects will have by
the time the algorithm will have finished its computations. This way the shortest path found is
up-to-date with the changed environment, instead of based on an old, and no longer accurate,
representation of the changed environment.

Another interesting general idea would be to combine an any-angle algorithm, such as Theta*
with a dynamic algorithm, such as D* Lite or AD*. Combining the quality of Theta* to find
shorter paths and expand less nodes than other non-dynamic algorithms, and the quality of a
dynamic algorithm, might lead to interesting results.

In conclusion it can be said, that the implementations and comparisons done in this thesis
are merely the very first step in implementing a suitable pathfinding system in a dynamic
computer game. Next to all considerations and implementations made in this thesis a few
more optimizations and adaptations have to be worked on, before an AI can reliably use a
pathfinding system. It should also be noticed, that this thesis only worked with one possible
setup of a dynamic environment. Therefore, conclusions drawn from these tests should not
blindly be taken for granted for all dynamic environments. They should be seen as one set of
experience and function as a starting point for own implementation and testing.

82

Bibliography

[Blu19] BlueRaja. High-Speed-Priority-Queue-for-C-Sharp, 2019. Retrieved 21.02.2019 from:
https://github.com/BlueRaja/High-Speed-Priority-Queue-for-C-Sharp.

[BMS04] Adi Botea, Martin Müller, and Jonathan Schaeffer. Near optimal hierarchical
path-finding. Journal of Game Development, 1:7–28, 2004. Retrieved 27.01.2019 from:
http://webdocs.cs.ualberta.ca/~kulchits/Jonathan_Testing/publications/

ai_publications/jogd.pdf.

[Boo04] Michael Booth. The Official Counter-Strike Bot, 2004. Retrieved 27.01.2019 from:
https://www.cs.rit.edu/~jdb/tmp/making_of_official.pdf.

[Boo09] Michael Booth. The AI Systems of Left 4 Dead, 2009. Retrieved 27.01.2019
from: https://steamcdn-a.akamaihd.net/apps/valve/2009/ai_systems_of_

l4d_mike_booth.pdf.

[CFS06] Joseph Carsten, Dave Ferguson, and Anthony Stentz. 3D Field D: Improved Path
Planning and Replanning in Three Dimensions. In 2006 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 3381–3386. IEEE, 09.10.2006 -
15.10.2006. Retrieved 24.01.2019 from: https://www.ri.cmu.edu/pub_files/pub4/

carsten_joseph_2006_1/carsten_joseph_2006_1.pdf.

[Cha07] Alex J. Champandard. Near-Optimal Hierarchical Pathfinding (HPA*),
2007. Retrieved 27.01.2019 from: http://aigamedev.com/open/review/

near-optimal-hierarchical-pathfinding/.

[Cho10] Howie Choset. Robotic Motion Planning: A* and D* Search. Lecture slides, Carnegie
Mellon University, 2010. Retrieved 11.01.2019 from: https://www.cs.cmu.edu/

~motionplanning/lecture/AppH-astar-dstar_howie.pdf.

[Cod12] CodeCompile. A* Pathfinding Tutorial, 2012. Retrieved 31.01.2019 from: https://

www.youtube.com/watch?v=KNXfSOx4eEE.

[Com19] Computer History Museum. Shakey, 2019. Retrieved 08.03.2019 from: https://

www.computerhistory.org/revolution/artificial-intelligence-robotics/

13/289.

[DB88] Thomas L. Dean and Mark S. Boddy. An Analysis of Time-Dependent Planning.
In AAAI, volume 88, pages 49–54, 1988. Retrieved 13.02.2019 from: https://

www.aaai.org/Papers/AAAI/1988/AAAI88-009.pdf.

83

https://github.com/BlueRaja/High-Speed-Priority-Queue-for-C-Sharp
http://webdocs.cs.ualberta.ca/~kulchits/Jonathan_Testing/publications/ai_publications/jogd.pdf
http://webdocs.cs.ualberta.ca/~kulchits/Jonathan_Testing/publications/ai_publications/jogd.pdf
https://www.cs.rit.edu/~jdb/tmp/making_of_official.pdf
https://steamcdn-a.akamaihd.net/apps/valve/2009/ai_systems_of_l4d_mike_booth.pdf
https://steamcdn-a.akamaihd.net/apps/valve/2009/ai_systems_of_l4d_mike_booth.pdf
https://www.ri.cmu.edu/pub_files/pub4/carsten_joseph_2006_1/carsten_joseph_2006_1.pdf
https://www.ri.cmu.edu/pub_files/pub4/carsten_joseph_2006_1/carsten_joseph_2006_1.pdf
http://aigamedev.com/open/review/near-optimal-hierarchical-pathfinding/
http://aigamedev.com/open/review/near-optimal-hierarchical-pathfinding/
https://www.cs.cmu.edu/~motionplanning/lecture/AppH-astar-dstar_howie.pdf
https://www.cs.cmu.edu/~motionplanning/lecture/AppH-astar-dstar_howie.pdf
https://www.youtube.com/watch?v=KNXfSOx4eEE
https://www.youtube.com/watch?v=KNXfSOx4eEE
https://www.computerhistory.org/revolution/artificial-intelligence-robotics/13/289
https://www.computerhistory.org/revolution/artificial-intelligence-robotics/13/289
https://www.computerhistory.org/revolution/artificial-intelligence-robotics/13/289
https://www.aaai.org/Papers/AAAI/1988/AAAI88-009.pdf
https://www.aaai.org/Papers/AAAI/1988/AAAI88-009.pdf

Bibliography

[DN+07] Kenny Daniel, Alex Nash, Sven Koenig, and Ariel Felner. Theta*: Any-Angle Path
Planning on Grids. In Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI), 1177-1183, 2007. Retrieved 14.02.2019 from: http://idm-lab.org/bib/

abstracts/papers/aaai07a.pdf.

[DN+10] Kenny Daniel, Alex Nash, Sven Koenig, and Ariel Felner. Theta*: Any-Angle Path
Planning on Grids. J. Artif. Intell. Res. (JAIR), 39, 2010. Retrieved 14.02.2019 from:
https://arxiv.org/ftp/arxiv/papers/1401/1401.3843.pdf.

[FS05] David Ferguson and Anthony Stentz. The Field D* Algorithm for Improved Path
Planning and Replanning in Uniform and Non-Uniform Cost Environments, 2005.
Retrieved 23.01.2019 from: https://www.ri.cmu.edu/pub_files/pub4/ferguson_

david_2005_3/ferguson_david_2005_3.pdf.

[FS06] Dave Ferguson and Anthony Stentz. Using interpolation to improve path
planning: The Field D* algorithm. Journal of Field Robotics, 23(2):79–101, 2006.
Retrieved 23.01.2019 from: https://www.ri.cmu.edu/pub_files/pub4/ferguson_

david_2006_3/ferguson_david_2006_3.pdf.

[Gra18] Graceful Algorithms. User’s manual for "PathFinder 3D": Version 0.3, 2018.
Retrieved 27.01.2019 from: https://gracefulalgs.com/wp-content/uploads/

2018/07/User_39_s_manual.pdf.

[HNR68] P. E. Hart, N. J. Nilsson, and B. Raphael. A Formal Basis for the Heuristic
Determination of Minimum Cost Paths. IEEE Transactions on Systems
Science and Cybernetics, 4(2):100–107, July 1968. Retrieved 11.01.2019 from:
https://www.cs.auckland.ac.nz/courses/compsci709s2c/resources/Mike.d/

astarNilsson.pdf.

[KL02a] S. Koenig and M. Likhachev. Incremental A*. In T. G. Dietterich, S. Becker,
and Z. Ghahramani, editors, Advances in Neural Information Processing Systems
(NIPS), pages 1539–1546. MIT Press, 2002. Retrieved 18.01.2019 from: http://

papers.nips.cc/paper/2003-incremental-a.pdf.

[KL02b] S. Koenig and M. Likhachev. Improved fast replanning for robot navigation in
unknown terrain. In IEEE International Conference on Robotics and Automation
2002, Conference Proceedings Ser, pages 968–975, Piscataway, May 2002. I E
E E. Retrieved 19.01.2019 from: http://idm-lab.org/bib/abstracts/papers/

tr-dstarlite.pdf.

84

http://idm-lab.org/bib/abstracts/papers/aaai07a.pdf
http://idm-lab.org/bib/abstracts/papers/aaai07a.pdf
https://arxiv.org/ftp/arxiv/papers/1401/1401.3843.pdf
https://www.ri.cmu.edu/pub_files/pub4/ferguson_david_2005_3/ferguson_david_2005_3.pdf
https://www.ri.cmu.edu/pub_files/pub4/ferguson_david_2005_3/ferguson_david_2005_3.pdf
https://www.ri.cmu.edu/pub_files/pub4/ferguson_david_2006_3/ferguson_david_2006_3.pdf
https://www.ri.cmu.edu/pub_files/pub4/ferguson_david_2006_3/ferguson_david_2006_3.pdf
https://gracefulalgs.com/wp-content/uploads/2018/07/User_39_s_manual.pdf
https://gracefulalgs.com/wp-content/uploads/2018/07/User_39_s_manual.pdf
https://www.cs.auckland.ac.nz/courses/compsci709s2c/resources/Mike.d/astarNilsson.pdf
https://www.cs.auckland.ac.nz/courses/compsci709s2c/resources/Mike.d/astarNilsson.pdf
http://papers.nips.cc/paper/2003-incremental-a.pdf
http://papers.nips.cc/paper/2003-incremental-a.pdf
http://idm-lab.org/bib/abstracts/papers/tr-dstarlite.pdf
http://idm-lab.org/bib/abstracts/papers/tr-dstarlite.pdf

Bibliography

[KL02c] Sven Koenig and Maxim Likhachev. D* Lite. In Eighteenth National Conference
on Artificial Intelligence, pages 476–483, Menlo Park, CA, USA, 2002. American
Association for Artificial Intelligence. Retrieved 18.01.2019 from: http://

idm-lab.org/bib/abstracts/papers/aaai02b.pdf.

[LF+05] Maxim Likhachev, David Ferguson, Geoffrey Gordon, Anthony Stentz, and
Sebastian Thrun. Anytime Dynamic A*: An Anytime, Replanning Algorithm.
2005. Retrieved 21.01.2019 from: http://www.cs.cmu.edu/~ggordon/

likhachev-etal.anytime-dstar.pdf.

[LGT03a] Maxim Likhachev, Geoff Gordon, and Sebastian Thrun. ARA * : Formal
Analysis. 2003. Retrieved 12.01.2019 from: http://www.cs.cmu.edu/~ggordon/

mlikhach-ggordon-thrun.ara-tr.pdf.

[LGT03b] Maxim Likhachev, Geoffrey J. Gordon, and Sebastian Thrun. ARA*:
Anytime A* with Provable Bounds on Sub-Optimality. volume 16,
01 2003. Retrieved 13.02.2019 from: http://papers.nips.cc/paper/

2382-ara-anytime-a-with-provable-bounds-on-sub-optimality.pdf.

[Lik10] Maxim Likhachev. A* and Weighted A* Search. Lecture slides, Carnegie
Mellon University, 2010. Retrieved 13.02.2019 from: https://www.cs.cmu.edu/

~motionplanning/lecture/Asearch_v8.pdf.

[Mar15] Mitch Marcus. Informed Search. Lecture slides, 2015. Retrieved 08.03.2019 from:
https://www.seas.upenn.edu/~cis391/Lectures/informed-search-I.pdf.

[Mne18] Mnemosyne_Studio. A*, 2018. Retrieved 11.01.2019 from: http://mnemstudio.org/

path-finding-a-star.htm.

[Nas10] Alex Nash. Theta*: Any-Angle Path Planning for Smoother Trajectories
in Continuous Environmentes, 2010. Retrieved 14.02.2019 from: http://

aigamedev.com/open/tutorials/theta-star-any-angle-paths/.

[Pat19] Amit Patel. Heuristics, 09.02.2019. Retrieved 23.02.2019 from: http://

theory.stanford.edu/~amitp/GameProgramming/Heuristics.html.

[PN+17] Phuc Tran Huu Le, Nguyen Tam Nguyen Truong, Wonshoup So MinSu Kim, and
Jae Hak Jung. Applying Theta* in Modern Game. In Journal of Computers,
vol. 13, volume 5, pages 527–536. 2017. Retrieved 27.01.2019 from: http://

www.jcomputers.us/vol13/jcp1305-05.pdf.

85

http://idm-lab.org/bib/abstracts/papers/aaai02b.pdf
http://idm-lab.org/bib/abstracts/papers/aaai02b.pdf
http://www.cs.cmu.edu/~ggordon/likhachev-etal.anytime-dstar.pdf
http://www.cs.cmu.edu/~ggordon/likhachev-etal.anytime-dstar.pdf
http://www.cs.cmu.edu/~ggordon/mlikhach-ggordon-thrun.ara-tr.pdf
http://www.cs.cmu.edu/~ggordon/mlikhach-ggordon-thrun.ara-tr.pdf
http://papers.nips.cc/paper/2382-ara-anytime-a-with-provable-bounds-on-sub-optimality.pdf
http://papers.nips.cc/paper/2382-ara-anytime-a-with-provable-bounds-on-sub-optimality.pdf
https://www.cs.cmu.edu/~motionplanning/lecture/Asearch_v8.pdf
https://www.cs.cmu.edu/~motionplanning/lecture/Asearch_v8.pdf
https://www.seas.upenn.edu/~cis391/Lectures/informed-search-I.pdf
http://mnemstudio.org/path-finding-a-star.htm
http://mnemstudio.org/path-finding-a-star.htm
http://aigamedev.com/open/tutorials/theta-star-any-angle-paths/
http://aigamedev.com/open/tutorials/theta-star-any-angle-paths/
http://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html
http://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html
http://www.jcomputers.us/vol13/jcp1305-05.pdf
http://www.jcomputers.us/vol13/jcp1305-05.pdf

Bibliography

[Ste93] Anthony Stentz. Optimal and Efficient Path Planning for Unknown and Dynamic
Environments, 1993. Retrieved 16.01.2019 from: https:/www.ri.cmu.edu/pub_

files/pub3/stentz_anthony__tony__1993_1/stentz_anthony__tony__1993_

1.pdf.

[Ste94] A. Stentz. Optimal and efficient path planning for partially-known environments.
In Robotics and Automation, ’94 International Conference, pages 3310–3317,
Los Alamitos, 1994. IEEE Computer Society Press. Retrieved 16.01.2019
from: https:/www.ri.cmu.edu/pub_files/pub1/stentz_anthony__tony__1994_

1/stentz_anthony__tony__1994_1.pdf.

[SYK10] Xiaoxun Sun, William Yeoh, and Sven Koenig. Moving Target D* Lite. In Proceedings
of the 9th International Conference on Autonomous Agents and Multiagent Systems:
Volume 1 - Volume 1, AAMAS ’10, pages 67–74, Richland, SC, 2010. International
Foundation for Autonomous Agents and Multiagent Systems. Retrieved 22.02.2019
from: http://idm-lab.org/bib/abstracts/papers/aamas10a.pdf.

[UG16] UG. Coroutines in Unity3D C#, 2016. Retrieved 20.02.2019 from: http://

www.unitygeek.com/coroutines-in-unity3d/.

[Uni18a] Unity Documentation. Inner Workings of the Navigation System, 2018. Retrieved
26.01.2019 from: https://docs.unity3d.com/Manual/nav-InnerWorkings.html.

[Uni18b] Unity Documentation. Nav Mesh Obstacle, 2018. Retrieved 26.01.2019 from:
https://docs.unity3d.com/Manual/class-NavMeshObstacle.html.

[Uni18c] Unity Documentation. Navigation Areas and Costs, 2018. Retrieved 26.01.2019 from:
https://docs.unity3d.com/Manual/nav-AreasAndCosts.html.

[Uni18d] Unity Documentation. Navigation System in Unity, 2018. Retrieved 26.01.2019 from:
https://docs.unity3d.com/Manual/nav-NavigationSystem.html.

[Uni19a] Unity Documentation. Coroutines, 2019. Retrieved 20.02.2019 from: https://

docs.unity3d.com/Manual/Coroutines.html.

[Uni19b] Unity Documentation. Physics.Raycast, 2019. Retrieved 24.02.2019 from: https://

docs.unity3d.com/ScriptReference/Physics.Raycast.html.

[Uni19c] Unity Documentation. Physics.SphereCast, 2019. Retrieved 24.02.2019 from:
https://docs.unity3d.com/ScriptReference/Physics.SphereCast.html.

86

https:/www.ri.cmu.edu/pub_files/pub3/stentz_anthony__tony__1993_1/stentz_anthony__tony__1993_1.pdf
https:/www.ri.cmu.edu/pub_files/pub3/stentz_anthony__tony__1993_1/stentz_anthony__tony__1993_1.pdf
https:/www.ri.cmu.edu/pub_files/pub3/stentz_anthony__tony__1993_1/stentz_anthony__tony__1993_1.pdf
https:/www.ri.cmu.edu/pub_files/pub1/stentz_anthony__tony__1994_1/stentz_anthony__tony__1994_1.pdf
https:/www.ri.cmu.edu/pub_files/pub1/stentz_anthony__tony__1994_1/stentz_anthony__tony__1994_1.pdf
http://idm-lab.org/bib/abstracts/papers/aamas10a.pdf
http://www.unitygeek.com/coroutines-in-unity3d/
http://www.unitygeek.com/coroutines-in-unity3d/
https://docs.unity3d.com/Manual/nav-InnerWorkings.html
https://docs.unity3d.com/Manual/class-NavMeshObstacle.html
https://docs.unity3d.com/Manual/nav-AreasAndCosts.html
https://docs.unity3d.com/Manual/nav-NavigationSystem.html
https://docs.unity3d.com/Manual/Coroutines.html
https://docs.unity3d.com/Manual/Coroutines.html
https://docs.unity3d.com/ScriptReference/Physics.Raycast.html
https://docs.unity3d.com/ScriptReference/Physics.Raycast.html
https://docs.unity3d.com/ScriptReference/Physics.SphereCast.html

Bibliography

[Ver17] Steve Vermeulen. How to use Async-Await instead of coroutines in Unity3d 2017, 2017.
Retrieved 17.02.2019 from: http://www.stevevermeulen.com/index.php/2017/09/

using-async-await-in-unity3d-2017/.

[Ver18] Steve Vermeulen. Async Await Support - Asset Store, 2018. Retrieved
17.02.2019 from: https://assetstore.unity.com/packages/tools/integration/

async-await-support-101056.

[Wel12] Max Welling. A* Search. Lecture slides, Donald Bren School of Information &
Computer Sciences, 2012. Retrieved 11.01.2019 from: https://www.ics.uci.edu/

~welling/teaching/ICS175winter12/A-starSearch.pdf.

[Wik18a] Wikipedia contributors. A*-Algorithmus — Wikipedia, Die freie Enzyklopädie,
2018. Retrieved 31.01.2019 from: https://de.wikipedia.org/w/index.php?title=

A*-Algorithmus&oldid=179400352.

[Wik18b] Wikipedia contributors. A* search algorithm — Wikipedia, The Free Encyclopedia,
2018. Retrieved 31.01.2019 from: https://en.wikipedia.org/wiki/A*_search_

algorithm.

[Wik18c] Wikipedia contributors. Shakey the robot —Wikipedia, The Free Encyclopedia, 2018.
Retrieved 31.01.2019 from: https://en.wikipedia.org/wiki/Shakey_the_robot.

[XH11] Xiao Yan Cui and Hao Shi. A*-based Pathfinding in Modern Computer Games.
2011. Retrieved 27.01.2019 from: http://paper.ijcsns.org/07_book/201101/

20110119.pdf.

87

http://www.stevevermeulen.com/index.php/2017/09/using-async-await-in-unity3d-2017/
http://www.stevevermeulen.com/index.php/2017/09/using-async-await-in-unity3d-2017/
https://assetstore.unity.com/packages/tools/integration/async-await-support-101056
https://assetstore.unity.com/packages/tools/integration/async-await-support-101056
https://www.ics.uci.edu/~welling/teaching/ICS175winter12/A-starSearch.pdf
https://www.ics.uci.edu/~welling/teaching/ICS175winter12/A-starSearch.pdf
https://de.wikipedia.org/w/index.php?title=A*-Algorithmus&oldid=179400352
https://de.wikipedia.org/w/index.php?title=A*-Algorithmus&oldid=179400352
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/Shakey_the_robot
http://paper.ijcsns.org/07_book/201101/20110119.pdf
http://paper.ijcsns.org/07_book/201101/20110119.pdf

Appendix

Figure 54: Example of D* Lite with no heuristic [Cho10]

88

Appendix

Figure 55: Full example of D* Lite with no heuristic [Cho10]

89

Appendix

Figure 56: Full cell-grid (orthographic front view)

Figure 57: Full cell-grid with connections to neighbours indicated in yellow (orthographic front view)

90

Appendix

Figure 58: Average path length utilizing a cell-grid search graph

Figure 59: Average expanded nodes utilizing a cell-grid search graph

Figure 60: Average computation time utilizing a cell-grid search graph

91

Appendix

Figure 61: Average path length utilizing a waypoint-based search graph

Figure 62: Average expanded nodes utilizing a waypoint-based search graph

Figure 63: Average computation time utilizing a waypoint-based search graph

92

Appendix

Figure 64: Success rate in an all dynamic environment utilizing a cell-grid search graph

Figure 65: Success rate in an all dynamic environment utilizing a waypoint-based search graph

93

Appendix

Figure 66: Average distance travelled by the AI in an all dynamic environment utilizing a cell-grid search graph

Figure 67: Average total expanded nodes in an all dynamic environment utilizing a cell-grid search graph

Figure 68: Average total computation time in an all dynamic environment utilizing a cell-grid search graph

94

Appendix

Figure 69: Distance travelled by the AI in an all dynamic environment utilizing a cell-grid search graph

Figure 70: Expanded nodes in an all dynamic environment utilizing a cell-grid search graph

Figure 71: Computation time in an all dynamic environment utilizing a cell-grid search graph

95

Appendix

Figure 72: Average distance travelled by the AI in an all dynamic environment utilizing a waypoint search graph

Figure 73: Average total expanded nodes in an all dynamic environment utilizing a waypoint-based search graph

Figure 74: Average total computation time in an all dynamic environment utilizing a waypoint-based search graph

96

Appendix

Figure 75: Distance travelled by the AI in an all dynamic environment utilizing a waypoint-based search graph

Figure 76: Expanded nodes in an all dynamic environment utilizing a waypoint-based search graph

Figure 77: Computation time in an all dynamic environment utilizing a waypoint-based search graph

97

Hereby I confirm that I completed the presented bachelor’s thesis with the
title:

“Implementation and comparison of pathfinding algorithms in a dynamic 3D
space”

independently, and only with help of the specified resources. All passages
adopted from literature or other sources, e.g. websites, are clearly marked as
a quote by identifying the source.

Hamburg, 18.03.2019 Carina Krafft

Hiermit versichere ich, dass ich die vorliegende Bachelor-Thesis mit dem
Titel:

“Implementation and comparison of pathfinding algorithms in a dynamic 3D
space”

selbständig und nur mit den angegebenen Hilfsmitteln verfasst habe. Alle
Passagen, die ich wörtlich aus der Literatur oder aus anderen Quellen wie
z.B. Internetseiten übernommen habe, habe ich deutlich als Zitat mit Angabe
der Quelle kenntlich gemacht.

	Introduction
	Motivation
	Thesis goal
	Structure

	Foundation
	Lost in Space
	Pathfinding algorithms
	A*
	ARA*
	Theta*
	D*
	D* Lite
	Field D*
	AD*
	Conclusion

	Currently used systems
	Pathfinding in games
	Navigation system in Unity
	Path Finder 3D

	Concept
	Development and testing environment
	Proceeding
	Comparison
	Additional considerations
	Expected results

	Implementation
	Test environment
	Lost in Space
	Abstract test environment

	Search graph
	Cell-grid
	Waypoints
	Conclusion

	Pathfinding algorithms
	General implementation
	Multi-threading
	Open, closed, and incons list
	Heuristic

	A*-based
	A*
	ARA*
	Theta*

	D*-based
	D* Lite
	AD*

	Overall process of dynamic pathfinding
	Updating the search graph
	Recalculating the path
	Determine start and goal node
	Movement of the AI

	Comparison
	Static AI and destination
	Fully dynamic

	Conclusion
	Summary
	Conclusion
	Remaining issues
	Looking ahead

	Bibliography
	Appendix

