
Investigation of different decoding
algorithms for the automatic

generation of alternative language
patterns in German to English

translation

Bachelor-Thesis
zur Erlangung des akademischen Grades B.Sc.

Melina Zanon
2364383

Hochschule für Angewandte Wissenschaften Hamburg
Fakultät Design, Medien und Information
Department Medientechnik

Erstprüfer: Prof. Dr.-Ing. Sabine Schumann

Zweitprüfer: Prof. Dr. Larissa Putzar

Hamburg, 11. 08. 2021

Contents

1 Introduction 4
1.1 Motivation . 4
1.2 Structure . 5

2 Foundations 6
2.1 Neural Machine Translation . 6
2.2 Transfer Learning . 7
2.3 The Transformer Architecture . 8

2.3.1 Word Embeddings . 11
2.3.2 Multihead-Attention . 11
2.3.3 The Softmax Function . 13

2.4 T5 Text-to-text-transfer-transformer 13

3 Data Set 16
3.1 STAPLE Data Set . 16
3.2 German-English Data Set . 17

4 Methods 20
4.1 Decoding Algorithms for Multiple Outputs 20
4.2 Evaluation of Machine Translation 22

5 Experiments 30
5.1 Implementation . 30
5.2 Training . 32

6 Results 33
6.1 Metrics . 33
6.2 Discussion . 37

7 Conclusion 45

List of Figures 47

List of Tables 48

Bibliography 49

2

Abstract
A single sentence in one language can always be translated into another language in
multiple ways. Translation is therefore an ambiguous task, that is difficult to realize
in an automatic way. This thesis investigates different decoding algorithms for the
generation of text with a neural machine translation model. The goal is to generate
multiple translations with diverse language patterns. For this purpose, an artificial
neural network for German to English translation is implemented and translations
are generated using different decoding algorithms. The resulting translations are then
analyzed with regard to their quality and diversity.

Zusammenfassung
Ein einzelner Satz in einer Sprache kann immer auf mehrere Arten in eine ande-
re Sprache übersetzt werden. Übersetzung ist daher eine mehrdeutige Aufgabe, die
schwer automatisch zu realisieren ist. In dieser Arbeit werden verschiedene Deko-
dieralgorithmen für die Generierung von Text mit einem neuronalen maschinellen
Übersetzungsmodell untersucht. Das Ziel ist es, mehrere Übersetzungen mit unter-
schiedlichen Sprachmustern zu generieren. Dazu wird ein künstliches neuronales Netz
für die Deutsch-Englische Übersetzung implementiert und Übersetzungen mit ver-
schiedenen Dekodieralgorithmen generiert. Die resultierenden Übersetzungen werden
anschließend in Bezug auf ihre Qualität und Diversität analysiert.

1 Introduction
In an increasingly globalized world, people often need to communicate with each other
even when they do not speak the same language. Therefore, the need for high-quality,
fast automatic translation rises. The recent trend in the industry is to develop such
translation systems using artificial neural networks, that learn to translate texts from
data. While these systems get progressively better at producing fluent and natural
language, most of them only offer a single translation of the given text. An often-
overlooked fact is that languages are much more complex and variable than that
and a text can always be translated in multiple different ways. Which translation is
the best in a situation depends on many factors unknown to the system. It would
therefore be beneficial if a system could provide alternative translations.
This work focuses on a neural network based translation system, that provides

multiple alternative English translations for a German input text. The goal is to
investigate, which algorithms work best for generating multiple meaning equivalent
translations with alternative language patterns, such as different sentence structures
or use of vocabulary.

1.1 Motivation
More than 7,000 languages are spoken in the world (Eberhard et al. 2021). Although
the internet is often thought to be a very international space, very few of these
languages are represented online. There is a digital language divide (Young 2015).
About 77% of all internet users speak the same ten languages (Internet World Stats
2021). The language you speak, therefore limits the information that is available to
you online. For example, the English Wikipedia edition has about 6 million articles,
while the Danish edition has only about 280,000 (Wikipedia contributors 2021).
Research in natural language processing, that focuses on languages other than

English and better machine translation systems, could help people to better navigate
the digital world in their own language (Ruder 2020) or help them learn another
language. In a lot of use cases, having multiple alternative translations can be even
more beneficial. Some translation services, such as DeepL, already provide the option
to not only translate into English, but to differentiate between American and British
English. The same thing could be done for a wide variety of languages all with
their own dialects and regional differences. Similarly, a translation system could offer
differently structured translations using synonyms or paraphrases, so one can choose
the translation that best fits the indented tone and style. This could be helpful for

4

1 Introduction

professional use cases, such as writing a formal email, but also for creative writing,
such as writing a blog or fiction.
Having multiple translations can also be useful for language learning. The research

team of Duolingo, which is an online language-learning platform, realized that and
presented a new kind of task, called Simultaneous Translation and Paraphrasing for
Language Education (STAPLE) (Mayhew et al. 2020).
Applications like Duolingo often combine several types of exercises, like listening

or speaking exercises, fill-in-the-blank questions or sentence reconstruction exercises
often with multiple choice answers and of course free translation exercises, where the
user translates a prompt sentence into their first or second language.
The problem with these free translation exercises is that there are always multiple

possible translations for the same sentence. Words often have multiple correct trans-
lations, for example the German word “still” can be translates to “silent”, “quiet” or
“calm”. In many languages, such as Italian or Turkish, pronouns can be dropped in a
sentence because the conjugation of the verb already implies the pronoun, but they
can be used for emphasis. Often the meaning of a sentence does not change when
the word order differs, for example “In winter I wear an overcoat.” and „I wear an
overcoat in winter.”, could be translations of the same sentence.
All these different possible translations should be accepted as the right answer.

The process of manually finding all the possible translations would be very time
consuming. Furthermore, even human translators often translate things differently
and do not share the same opinion on which translation is “correct”. An interesting,
but challenging task for natural language processing is therefore finding an extensive
set of acceptable answers for these types of exercises, combining the task of machine
translation and automatic paraphrasing.

1.2 Structure
In the following chapters the process of how multiple diverse translations can be
automatically generated is elaborated.
First, in chapter 2 the foundations of current approaches to machine translation

are explained. This includes training methods and state-of-the-art architectures for
artificial neural networks. In chapter 3, the text data used for training and test-
ing the machine translation system is described. Chapter 4 then gives an overview
of the algorithms used to generate translations and the methods to evaluate those
translations. The implementation and training of the neural network, as well as the
generation of translations is described in chapter 5.
A detailed analysis of the generated translations is performed in chapter 6, answer-

ing the question which decoding algorithms best generate alternative and diverse
outputs.
In the last chapter 7, an assessment of the experiments in this thesis is conducted

and an outlook on possible further work is given.

5

2 Foundations
In order to develop an automatic translation system, a computer needs to have the
ability to process natural language on an almost human level. The research field of
natural language processing (NLP) is considered to be a branch of artificial intelli-
gence, because it requires a machine to “understand” language. To achieve this goal
machine learning methods and artificial neural networks are used to develop systems
that automatically learn to improve with the use of text or speech data.
The following chapter introduces the foundations needed to understand the auto-

matic translation system used in this work. First, an overview of the concept of neural
machine translation is given. Next, transfer learning, a specific training technique for
machine learning models, is described. After that, the transformer, a state-of-the-art
model architecture for NLP, and finally T5, the specific transformer model used for
the experiments in chapter 5, are introduced.

2.1 Neural Machine Translation
Machine translation (MT) is a sub-field of natural language processing, which aim is
to automatically translate text from a source language into a target language. Since
there is not one single right translation, but usually multiple, for any given sentence,
it is considered to be one of the more difficult problems in artificial intelligence.
Early machine translation systems operated with a set of human developed rules

and are therefore called rule-based machine translation systems. The inherent com-
plexity of natural languages made this approach very difficult, because it required
linguistic experts to manually write a very large set of rules and exceptions.
Statistical Machine Translation (SMT) is data-driven and does not require a set

of human developed rules. Instead, it aims to learn linguistic information from a
set of example translations in a parallel corpus. These systems typically consist of
several sub-components, that need to be tuned separately. They are count-based and
learn correlations of words and their translations. So-called phrase-based systems,
which learn statistics of words occurring together in a sentence (also called n-grams),
quickly outperformed the word-based approach and were considered state-of-the-art
up until 2016.
While neural networks were sometimes used within SMT, neural machine transla-

tion (NMT) is an approach, that uses a single neural network to directly translate
from one language to the other. Most NMT models use an encoder-decoder structure
(Cho et al. 2014). The encoder is a neural network, that reads the input sentence

6

2 Foundations

and encodes it into an abstract vector representation, called the context. The decoder
is a second neural network, that takes the output of the encoder and translates it
into the target sentence. The encoder and decoder are trained jointly as one big
network, making neural machine translation an end-to-end system. This new ap-
proach achieved comparable results with SMT in 2014 (Bahdanau et al. 2014). In
2016 Google announced the Google Neural Machine Translation system (Wu et al.
2016) and since then NMT is the predominant approach to machine translation in
the industry.

2.2 Transfer Learning
Traditionally, supervised machine learning models try to learn one specific task from
the ground up with labeled training data from the same domain and with the same
distribution as the future data, the model needs to perform that task on. Therefore,
these models are only able to generalize well on conditions encountered during train-
ing. For producing a similar result on a different task or in a different domain, a new
model would need to be trained from the ground up with the same amount of labeled
data. Depending on the task or domain it might not always be possible to gather a
sufficient amount of data to train such a model.
Transfer learning is the practice of using a model trained on a source task in a

source domain to solve another, related target task in a target domain, by utilizing
the knowledge the model has already learned.

Definition
The following section is based on the definitions and notations of Pan and Yang.
(Pan and Yang 2010)
There are two essential concepts involved in transfer learning: a domain and a task.

A domain D consists of a feature space X and a marginal probability distribution
P (X), with X being {x1, ..., xn} ∈ X . A task T in a specific domain D = {X , P (X)},
consists of a label space Y and a predictive function f(·), that can also be written as
the conditional probability distribution P (Y |X), which is learned from the training
data, consisting of pairs {xi ∈ X, yi ∈ Y }.
With D = {X , P (X)} and T = {Y , P (Y |X)} transfer learning can be defined as

follows:
“Given a source domain DS and learning task TS, a target domain DT and learn-

ing task TT , transfer learning aims to help improve the learning of the target predic-
tive function fT (·) in DT using the knowledge in DS and TS, where DS 6= DT , or
TS 6= TT .”(Pan and Yang 2010)

This knowledge can take on different forms and is gained in a so-called pretraining
phase. It can later be adapted to the target task in two different forms: feature-

7

2 Foundations

extraction and finetuning (Ruder 2019). In feature-extraction, pretrained representa-
tions are used as the input for a new model and the weights of the pretrained model
are frozen. In finetuning the pretrained model is directly trained with new data and
the weights are updated.

Transfer learning is predominantly used in the field of computer vision where huge,
labeled data sets like ImageNet are available for object recognition. While training
a neural network on the task of classifying different objects in pictures, the model
learns representations for the general structure and composition of images, such as
edges or shapes, before learning more task specific representations, such as a cat.
These lower-level representations of images can be transferred to a lot of other

machine learning tasks where the input is images. Not having to learn the general
elements an image is made of for every image recognition model, can save a lot of
computation, and lowers the amount of data needed for the target task.
This is especially useful when there is limited data available in the target domain or

task, but a massive amount in the source domain. For example, in natural language
processing this can be applied to train models on big, easily available English data
sets and later transfer that knowledge to a language where data is scarce. This is
referred to as cross-lingual learning (Ruder 2019).
Recent approaches to NLP and NMT involve the unsupervised pretraining of a

large neural network on massive amounts of unlabeled data. Often using a language
modeling task, where the model is trained to predict the next word given a sequence
of words and therefore learning a probability distribution of any given sequence of
words. The idea is that the pretrained model “understands” the underlying structure
of language and can then be applied to solve different problems, like summarization,
question answering or sentiment analysis.

2.3 The Transformer Architecture
Prior to the introduction of the transformer (Vaswani et al. 2017), sequence to se-
quence (seq2seq) problems like neural machine translation, were solved using recur-
rent neural networks (RNNs). RNNs can process temporal sequences with informa-
tion about previous inputs persisting in their internal states. Therefore, they are also
sometimes said to have “memory”. This makes them very useful in NLP, where words
depend on the context of previous words.
Using an encoder-decoder structure, these networks encoded the input sequence

into a fixed-length vector from which the decoder translates the sequence. While this
worked fairly well on short sentences, the models suffered in performance on longer
sentences, since all the input needed to be compressed into this fixed-length represen-
tation (Bahdanau et al. 2014). Since RNNs recursively concatenate previous inputs
and contexts at each step, the first input loses its impact over time, as it gets smaller
and smaller. This phenomenon is called the vanishing gradient problem (Hochreiter

8

2 Foundations

1991) and it means, that the model cannot “remember” long-term dependencies well.
To fix this problem long short-term memory neural networks (LSTMs) were intro-
duced (Hochreiter and Schmidhuber 1997). This type of recurrent neural network has
different gates, that filter what information is passed on and what can be forgotten.
Although this model solved the vanishing gradient problem, LSTMs still had other
problems typical to RNNs. Mainly that inputs are processed sequentially, which is
slow and hard to parallelize to train on multiple GPUs.
Furthermore, the fixed-length context vector passed from the encoder to the de-

coder was still a bottleneck in these networks, because it was the only information the
decoder had to work with. Attention is a technique developed to solve this problem
(Bahdanau et al. 2014, Luong et al. 2015). It allows the model to amplify the relevant
parts of the input sequence in the decoder, in order to give additional information
to the context. It improved neural machine translation significantly, by learning how
to align words in a given language pair. Amongst other things, this technique made
models deal better with the problem of reversed word order, which can be seen in
Figure 2.1. The French translation of the English phrase “European Economic Area”
is “zone économique européenne”.

Figure 2.1: Visualization of Attention with reversed word order (Bahdanau et al. 2014)

In their paper “Attention is All You Need” (Vaswani et al. 2017), the authors
proposed a new model architecture called the transformer. As the title suggest, this
model relies solely on the attention mechanism and therefore got rid of all the RNN
components in the traditional encoder-decoder structure.

9

2 Foundations

The architecture shown in Figure 2.2, consists of N encoders and decoders stacked
on top of each other.
Each encoder has two main components, the multihead-attention block (see 2.3.2)

and a simple feed forward network. Both components have an additional layer nor-
malization. The input sequence is first embedded into an n-dimensional vector (see
2.3.1) and then a positional encoding is added. This is necessary since the trans-
former processes the whole input sequence at once and not sequentially like RNNs.
Therefore, the order of the sequence is lost and needs to be encoded into the input
embedding to keep the important information of position.
Each decoder has two different multihead-attention blocks, one for the output

embedding and one for the context vector from the encoder, and a feed forward
network. The output is embedded, and the positional encoding added just as in the
input, only that the output is shifted right. This is done so that the decoder does
not learn to copy the input it gets, but to predict the next word given the context
from the encoder and only the previous decoder outputs. Since the input is not fed
in sequentially, the first multihead-attention block is masked, to prevent the decoder
from considering future inputs at each position. Lastly, a linear layer and a softmax
layer (see 2.3.3) are added on top of the entire decoder stack, to turn the decoder
output into probabilities.

Figure 2.2: The Transformer model architecture (Vaswani et al. 2017)

10

2 Foundations

2.3.1 Word Embeddings
In all NLP tasks text inputs need to be converted into a representation that a neural
network can interpret; this essentially means the input needs to be numerical. One
way to do that is to convert each word, or each sequence as a bag of words, to a one-
hot encoded vector. This vector has the size of the vocabulary V , with each position
representing one word. The encoded word is represented by a 1 and all others are 0.
This leads to very large and sparse vectors, that are not very useful in practice.
Instead, word embedding is used to learn a lower dimensional, real-valued, repre-

sentation, called a word-vector or word embedding. The embeddings can be learned
separately, with a specific embedding model like Word2Vec (Mikolov et al. 2013) or
GloVe (Pennington et al. 2014) and then fed into another model as the input. This
approach is also a form of feature-extraction transfer learning. It can be done either
statically, keeping the embedding the same during training, or dynamically, updating
the embedding jointly while training to better fit the specific task. Another option
is to learn the embedding directly during training in a so-called embedding layer.
Word-vectors are not only more efficient features for neural networks, because of the

dimensionality reduction making them faster to process, they are also able to encode
meaning. They achieve this by embedding words, that are similar, near each other
in the vector space. For example, the distance between the vectors for “apple” and
“pear” would be smaller than the distance between “apple” and “car”. The direction of
vectors also seems to encode some meaning, making arithmetic manipulation possible.
A famous example for this is subtracting the vector for “man” from “king” and adding
the vector of “woman” giving a vector that is close to that of the word “queen”.
In the case of the transformer, these word embeddings with the added positional

encoding are the input of the first encoder and decoder in the stack. They are learned
directly in the embedding layer.

2.3.2 Multihead-Attention
The main component that differentiates the transformer from other seq2seq models is
the multihead-attention block. It consists of several attention heads or layers, running
in parallel. In the encoder and the first multihead-attention block of the decoder, a
method called self-attention is used.
The attention mechanism as it is used in LSTMs learns what parts of the input

sequence are important to parts of the output sequence. Self-attention learns what
parts of the input sequence are important to itself. As the meaning of a word depends
on the context surrounding it, this mechanism helps to identify that context. It does
so by processing each word as a weighted average of the entire sequence.
The particular attention used in the transformer is called scaled dot-product atten-

tion (see Figure 2.3). The first step of the calculation is to create three vectors from
the input embedding or the previous encoder output, called query, key and value.
In practice theses vectors are packed together into the matrices Q, K and V for

11

2 Foundations

Figure 2.3: Scaled Dot-Product Attention in detail (left) and Multi-Head Attention with
several parallel heads (right)(Vaswani et al. 2017)

the entire input sequence. They are calculated by multiplying the input with learned
weight matricesWQ, WK of size dmodel×dk andW V of size dmodel×dv, which reduces
their dimension for more efficient computation.
The next step is to compute a score, that is the dot product of all queries and

keys. This can be done with matrix multiplication of Q and the transpose KT . This
score is then scaled by a factor of 1√

dk
and a softmax function (see 2.3.3) is applied to

obtain weights. These are then multiplied with the values in V . The weighted value
matrix is the output of the scaled dot-product attention:

Attention(Q,K, V) = softmax(QK
T

√
dk

)V (2.1)

As the name suggest, multi-head attention consists of several of these self-attention
mechanisms. They run in parallel, each learning to focus on different parts of the
sequence. To ensure that the heads learn different things the weight matrices WQ,
WK and W V are randomly initialized and updated during training for each head
separately. This allows the model to have multiple different representation subspaces
for the input. The output of each attention head is a weighted value matrix, resulting
in h different matrices of size dmodel × dv. To pass the output to the feed-forward
network it needs to be of the dimension dmodel. The h outputs of the attention heads
are therefore concatenated and multiplied by another learned weight matrix WO of
size hdv × dmodel to produce the final output of the layer:

MultiHead(Q,K, V) = Concat(headi, ..., headh)WO

where headi = Attention(QWQ
i , KW

K
i , V W

V
i)

(2.2)

The self-attention heads of the decoder differ from the ones of the encoder in that
they include an additional masking step before the softmax. In this step all positions

12

2 Foundations

of the input that come after the current position are set to −∞, to prevent giving
the decoder information about the future positions it is trying to predict.
The third use of multi-head attention in the transformer is the encoder-decoder

attention, which is similar to the attention mechanism used in other seq2seq models.
In these layers the queries come from the previous decoder layer, while the keys and
values come from the output of the encoder stack.

2.3.3 The Softmax Function
The output just like the input of a neural network is always numerical. This output
needs to be converted into something a human can understand by some activation
function. In a classification task for example, this output would be the predicted class
label, like “cat”. A common way to do that is to normalize the output into a proba-
bility distribution over the output classes. These probabilities can be interpreted as
how “sure” the network is in its decision that this is indeed a cat.
The softmax is a mathematical function, that converts the values of a vector into

probabilities. It takes the output values of the last linear layer in a neural network and
converts it into positive values summing up to one. The probabilities are proportional
to the relative scale of the converted values.
The function σ(x) (2.3) takes a vector x = {x1, ..., xK} and applies the exponen-

tial function to each element xi and then divides this value by the sum of all the
exponential values to normalize it. This ensures that all values sum up to one.

σ(x)i = exi∑K
j=1 e

xj
(2.3)

In the transformer, the output of the last decoder is put through a final fully
connected linear layer that converts it into a large logits vector with the size of the
vocabulary |V|. Each index in this vector corresponds to a word in the vocabulary.
The softmax function is then applied to the logits vector to convert these numbers
into probabilities, that indicate which words in the vocabulary are likely to be next
in the sequence.

2.4 T5 Text-to-text-transfer-transformer
The Text-to-text-transfer-transformer (T5) was developed to test the limits of current
transfer learning techniques with a variety of NLP tasks (Raffel et al. 2020). It
presents a unified framework, that enables every NLP task to be treated as a text-
to-text problem, i.e., the input as well as the output is text. This allows for the use
of the same model and training procedure for every task, with the added benefit of
making different factors in the process more comparable. The goal is to find a setup
that works well for multiple different tasks.

13

2 Foundations

The model architecture of T5 does not differ a lot from the original transformer
architecture. Instead of using fixed position embeddings, it uses a simplified form of
relative position embeddings, which are learned during training. It also uses a sim-
plified layer normalization, that does not have an additive bias. The T5-Base model
has 12 encoders and decoders, with each attention mechanism having 12 heads. The
matrices Q, K and V have an inner dimensionality of 64. The feed-forward network
in each encoder or decoder consists of a dense layer with an output dimensionality
of 3072 followed by a ReLU activation function and a second dense layer. Sub-layers
and embeddings have a dimensionality of dmodel = 768. The entire model has about
220 million parameters.
The authors of the T5 paper also introduce a new data set called the Colossal Clean

Crawled Corpus (C4) to pretrain the model on. They base this data set on the text
data from April 2019 of the Common Crawl archive, which provides web extracted
text by scraping about 20TB of text from HTML files each month. This data was
then cleaned to retain only natural language text. This includes removing any text
that is source code, by removing every page that contains a curly bracket “{” and
every line that contains the word “JavaScript”, or placeholder text, containing the
words “lorem ipsum”. Also, short pages and sentences are filtered out, as well as
lines not ending in a terminal punctuation mark, pages containing offensive language
and duplicate texts. Finally, an automatic language detector was used to only retain
English text. The resulting data set is about 750GB of text.
The T5 models were pretrained for 1 million steps with a batch size of 211. With a

maximum sequence length of 512 tokens, this means the models were pretrained on
about 1 trillion tokens. During the pre-training phase they used AdaFactor (Shazeer
and Stern 2018), an adaptive gradient-based optimization algorithm, and an inverse
square root learning rate schedule, where the learning rate is 0.01 for the first 104

warm-up steps and then exponentially decays over time.
For preprocessing the text data the SentencePiece tokenizer (Kudo and Richardson

2018) is used. Tokenization is a process that breaks down text into small components,
called tokens, like words, parts of words or punctuation. Tokenization algorithms
create a vocabulary of tokens, by learning the best way to split text into tokens from
a corpus and save these tokens with an id in a look-up table. For T5 a subword
tokenization algorithm is used, that is trained on 10 parts C4 data and 1 part other
Common Crawl data for each of the other languages used in the paper, to learn a
vocabulary of 32,000 subwords. This is done to be able to later finetune the model
for translation. The vocabulary used for T5 includes English, German, French and
Romanian, which means that it can only process these four languages.
For the source task a denoising (also called masked language modeling) objective

was chosen. Instead of just predicting the next word in a sequence of words, like in
causal language modeling, denoising means predicting missing or corrupted tokens in
a sequence. The data for this task does not require labels, as it is possible to randomly
corrupt tokens in the training data and create corresponding targets automatically.
This task teaches the model general-purpose knowledge about language.

14

2 Foundations

Instead of single tokens the T5 objective, shown in Figure 2.4, corrupts spans of
consecutive tokens and replaces them with mask tokens. The target to be predicted is
a sequence of these corrupted spans, each prefixed by the mask token, that was used
to replace it. This makes training faster than when predicting the entire sequence,
since the targets are shorter. Specifically, 15% of tokens are corrupted and the average
span length is set to be 3.

Figure 2.4: The pretrainig objective used in the T5 models (Raffel et al. 2020)

The released pretrained versions of T5 are not only pretrained on the unsupervised
denoising objective alone, but are pretrained using a multi-task pretraining strategy,
where the model is trained on several task simultaneously. This has shown to improve
the results of finetuning. Using the text-to-text framework, every input is prefixed
with a label like “translate English to German:”, or “summarize:” to differentiate the
tasks. The C4 data set is then mixed with several task specific data sets and the
inputs are randomly sampled from this concatenated data. To account for differences
in data set size an artificial limit is set to adjust the proportions. For the T5-Base
model the limit is 2,620,000 and additionally translation data sets are cut down to 1
million examples. Since one of the tasks T5 is pretrained on is English to German
translation, it might already have a good understanding of translation between these
languages and could easily be used to finetune it for German to English translation
without a big data set.
There are five different sizes of the T5 model:

• Small ∼ 60 million parameters
• Base ∼ 220 million parameters
• Large ∼ 770 million parameters
• 3B ∼ 3 billion parameters
• 11B ∼ 11 billion parameters

For all experiments in this thesis the T5-Base model is used.

15

3 Data Set
The following chapter describes the data being used for developing a German to
English translation system. Since the idea for the experiments in this thesis was
inspired by the STAPLE data set and task of the Duolingo shared task 2020 (Mayhew
et al. 2020), the chapter first describes this data set. Afterwards, the German-English
data set that was specifically created for this thesis is described.

3.1 STAPLE Data Set
For the Duolingo shared task 2020 the Duolingo team published five data sets in
different languages (Mayhew et al. 2020). They proposed a new task called STAPLE.
For the task, English prompts are taken as the input of a machine translation system
and a set of plausible translations is generated.

Train Val Test
Language engl. trans. ratio engl. trans. ratio engl. trans. ratio
Hungarian 4,000 251,442 62.9 500 27,647 55.3 500 33,578 67.2
Japanese 2,500 855,941 342.4 500 172,817 345.6 500 165,095 330.2
Korean 2,500 700,410 280.2 500 140,353 280.7 500 150,477 301.0
Portuguese 4,000 526,466 131.6 500 60,294 120.6 500 67,865 135.7
Viatnamese3,500 194,720 55.6 500 29,637 59.3 500 28,242 56.5

Table 3.1: Sizes of the STAPLE data sets (Mayhew et al. 2020)

The published data sets consist of English prompts with several accepted trans-
lations, produced by users of the Duolingo online language-learning platform. Its
domain is therefore language learner texts, which are relatively short and simple
sentences, that usually provide an example of a specific grammatical rule or use of
vocabulary in context. The data was sampled from English courses for Hungarian,
Japanese, Korean, Brazilian Portuguese, and Vietnamese speakers. The users were
given an English prompt and asked to translate it into their respective language.
Data was gathered for one month to count how often a translation was given by a
user. These counts were then normalized as a learner response frequency weight for
each translation in a set of accepted translations of a prompt, so that they all sum
up to one. The learner response frequency should indicate more fluent and natural
responses, although all responses are technically correct ones. The prompts have

16

3 Data Set

different numbers of accepted translations, depending on length and the number of
possible meanings.
The resulting data sets each have 500 prompts for the test and validation data set,

respectively. The training data set size varies for the different languages and depends
on the size of the English course in Duolingo. The average size of the accepted
translation set lies between 50 and 350, depending on the language. This leads to a
very high coverage of possible translations. All numbers of the data set are shown in
Table 3.1.

3.2 German-English Data Set
As the STAPLE data set does not include German, the goal is to create a similar
data set with German prompts and several correct English translations while staying
in the domain of language learning text. In the shared task the use of additional
corpora was allowed and teams that did use that opportunity reported better results
when using other data geared towards language learners. Specifically, the Tatoeba
corpus was mentioned to be extremely similar to the STAPLE domain.
Tatoeba1 is a large database of sentences and translations, that provides examples

of words in context for language learners. It is collaborative and open; the sen-
tences and translations are provided by users. At the moment Tatoeba supports 405
languages, including German with over 500,000 sentences.
Unlike other popular sentence aligned parallel corpora like Europarl or Wikipedia

based corpora, the Tatoeba corpus includes multiple alternative translations. Another
option would have been using the OpenSubtitles corpus and making use of alternative
movie subtitle translations, which can be useful for language learners since it is mostly
dialogue. However, alternative subtitles for an entire movie include a lot of duplicate
translations and are often free translations that try to shorten the dialogue according
to the time constraints of the scene. Similarly Multi30k, a data set of English and
German image descriptions used for translation tasks or automatic image captioning,
includes multiple English sentences per image. Of those sentences however only one is
directly translated to German, and the other four are independent descriptions. While
they all describe the same image, they can not be treated as direct translations. Both
these data sets therefore seem too noisy for the task in this thesis and the Tatoeba
data is chosen instead.
Taking all German sentences with at least two English translations from the Tatoeba

database results in a data set with 29,096 prompts before cleaning. This is several
times larger than the largest language sets in the STAPLE data, but there are far
less translations per prompt. Most of the sentences have merely two or three trans-
lations, resulting in only about 70,000 translations. Nevertheless, the groups that
participated in the STAPLE challenge often used only a fraction of the provided

1The data from Tatoeba is released under the CC-BY 2.0 FR license and is available at https:
//tatoeba.org.

17

https://tatoeba.org
https://tatoeba.org

3 Data Set

translations, suggesting that the amount of data could be sufficient to produce com-
parable results.
Since anyone can contribute sentences to Tatoeba, some steps are taken to clean

the data while keeping in mind the language learning use case. Only correct and truly
different translations are kept. First, some offensive and inappropriate language is
filtered out manually. A lot of the translations only differ in punctuation. If more
than two translations are available and two of them are only different in punctuation,
the most “direct” translation is kept. For example, if one sentence ends in a period
an another in an exclamation mark, the one ending in the same terminal punctuation
mark as the German prompt is chosen. Otherwise, if there are only two translations
and both are the same except for the punctuation, the whole prompt is removed, as
it does not qualify as a set of alternative translations.
In an additional step all numbers are converted. Learning the numbers is an

essential part of learning a language. Therefore, numbers should be converted to
their word representations. Taking into account the different conversions for ordinal
numbers, years and telephone numbers (e.g., October 20th = “twentieth”, 1939 =
“nineteen thirty-nine”, 911 = “nine-one-one”), numbers are written like they are
spoken, as this is how it would be done in a language learning context. For the
German prompts, case has to be considered when converting ordinal numbers, for
example “20. Oktober” can be “zwanzigster Oktober”, “am zwanzigsten Oktober”
or “der zwanzigste Oktober” depending on the context.
Some Tatoeba sentences included translations that converted units of measure-

ment into their American or British equivalents. For example, the sentence “Tom
hat dreißig Kilo abgenommen” (eng. “Tom lost thirty kilos”) being translated as
“Tom lost seventy pounds”. Although technically correct, translating the numbers
directly is more intuitive. Furthermore, a machine translation system will not learn
conversion rates, therefore these conversions are likely to hurt the translation qual-
ity. Both German and American/British units of measurement are included in the
sentences of the data set, but not as different translations of the same prompt. An
allowed exception is the conversion of time, such as conversions of the 12-hour to the
24-hour system (e.g., “achtzehn Uhr” (18:00) being translated to “six o’clock”), or
specific differences in German and English customs of telling the time, e.g., “halb
drei” (lit. “Half three”) being translated to “half past two”. Telling the time is dif-
ferent in every language. Therefore, these conversions should be allowed for clarity.

Train Val Test
ger. trans. ratio ger. trans. ratio ger. trans. ratio

27,613 63,599 2.3 530 1,153 2.2 503 1,151 2.3

Table 3.2: Size of the German-English data set

After these cleaning steps the resulting data set has 28,646 German prompts and
65,903 English translations in total. Like in the STAPLE data, a subset of roughly

18

3 Data Set

500 prompts was taken for validation and testing, respectively. The average sentence
length is about 7-8 tokens (including punctuation). The resulting sizes are shown in
Table 3.2.
The data set is saved as translations pairs. Each German prompt is thereby re-

peated as many times as there are alternative translation for this prompt (between 2
and 14 times).

19

4 Methods
To generate translations with a machine translation model an algorithm needs to
decode the model output. Depending on the specific algorithm used, the generated
translations can differ considerably. The following chapter first describes the decoding
algorithms used in this thesis. Afterwards it gives an overview of different methods
used to evaluate machine translation, that will be used to compare the outputs of
the different decoding algorithms in chapter 6.

4.1 Decoding Algorithms for Multiple Outputs
The model outputs a probability distribution over the entire vocabulary V for each
token in the output sequence. To generate text from these probability distributions,
a search algorithm needs to find a likely sequence of words, that make up the final
sentence.
Searching through all possible output sequences to find the most likely one is

inefficient, since the number of options grows exponentially at each step. The options
for the first word being the size of the vocabulary |V|, the options for the second word
being |V|2 and so forth until the end of the sequence. The vocabulary of large language
models is often tens or hundreds of thousands of words. Therefore, the problem is in
reality solved with heuristic decoding methods, that find an approximate solution.
This language generation is called auto-regressive, as it uses previous outputs to

predict the current output at each time step. This means, that the probability dis-
tribution of a sequence of words w = {w1, ..., wT} can be written as the product of
conditional next word distributions P (wt|w1, w2, ..., wt−1, c) at each time step t, with
c being the context word sequence:

P (w) =
T∏
t=1

P (wt|w1, w2, ..., wt−1, c) (4.1)

A simple and fast solution is to use greedy search. As the name “greedy” implies
this algorithm greedily takes the word with the highest probability at each time step:
wt = argmaxw P (w|w[t−1], c).
While this successfully picks the highest probability for the current time step,

it might produce a sub-optimal sequence overall. This is because it misses high
probability words, that are “hidden” behind lower probability words and therefore
decreases the likelihood of the entire output sequence. Furthermore, it will always

20

4 Methods

produce the same output with no possible variance, which makes it not suitable for
generating multiple outputs.

Beam Search will find an output sequence with an overall higher probability than
greedy search. The way it works is that it keeps track of a set of B (the beam-width)
most probable candidate sequences. These candidate sequences are called beams. It
considers the B best next words for each beam in a greedy fashion, making B2 new
candidate sequences. These are then scored, by their overall probability and the B
best scored candidates are kept. This process repeats until all beams reach an end-
of-sequence token, or a predefined maximum length. This solves the problem of high
probability words hidden behind lower probability words and produces higher quality
sentences. It can also be used to generate alternative sentences by simply outputting
all beams.
Although beam search is a widely used algorithm in NLP problems, it is critiqued

to produce generic outputs with a lack of diversity (Vijayakumar et al. 2018). For
problems with ambiguous outputs, where there is not one clear, correct answer, the
near identical sequences of beam search might not be favorable. While producing
different “correct” outputs, they often only differ by one or two words and do not
accurately portray the diverse possible solutions to these problems. Sentences also
often stem from the same high-valued beam, that is kept earlier in the process, leading
to little variety in sentence structure. For NMT that aims at only finding one best
translation it might be a good solution, but when searching a variety of alternative
translations, one might argue, that beam search does not sufficiently capture the
complexity of that task.

Diverse Beam Search is an alternative to beam search with a diversity objective,
proposed by (Vijayakumar et al. 2018). It divides the beams into G groups and
greedily optimizes each group using beam search, keeping the previous groups fixed.
By adding a dissimilarity term, that penalizes the use of tokens that have been used
before in other groups, it then modifies the next word probabilities. Forcing the fol-
lowing beam search step to pick other words encourages the exploration of different
paths in each group. As this allows for different words to be picked at the beginning of
generation it can produce alternative sentence structures. Therefore, this approach
might be relevant for alternative translations, giving more interesting variation in
structure and vocabulary use.

A different approach to decode the sequence is sampling. In which the next
word wt is randomly picked with respect to its conditional probability distribution:
wt ∼ P (w|w[t−1], c). This is done to introduce randomness into the generation in
order to make text less generic and thus more natural. However, without any restric-
tions, sampling by itself produces nonsensical outputs as the next word can technically
be any word in the vocabulary. To combat this a parameter called temperature is

21

4 Methods

often used to change the output probabilities of the decoder, increasing high proba-
bilities and decreasing low ones before sampling. While this decreases the chance of
nonsensical tokens to be picked, it does not eliminate it entirely.

Top-K Sampling is a very simple solution to eliminate the chance of unlikely words
occurring during generation, that was originally proposed for story generation (Fan
et al. 2018). At each time step only the k most likely next tokens are considered
while sampling. This reduces the amount of unreliable tokens, while still keeping the
element of randomness.
A difficulty of top-k sampling is picking the right value for k. If it is small it

might exclude good next words and limit the diversity, if it is too big unlikely words
might still be included, damaging the quality of generation. Furthermore, probability
distributions are different for each time step, but k stays the same. This leads again
to exclusion of likely next words when the distribution is flat, i.e. there are many
similarly good words, and to inclusion of unlikely words if the distribution is sharp,
i.e. there are only few high probability words.

Top-P Sampling is another sampling strategy, that is also called nucleus sampling
(Holtzman et al. 2019). It can change the probability distribution from which to sam-
ple dynamically at each time step, by only considering the nucleus of the distribution.
The nucleus is where the vast majority of the probability mass lies. Instead of using
a fixed value like k to reduce the amount of possibilities, top-p sampling chooses
the minimum number of words from the probability distribution whose accumulated
probability exceeds a threshold of p. This approach includes all high probability
words, while suppressing the unreliable tail of low probability words sufficiently.

It is also possible to combine top-k sampling, top-p sampling and sampling with
temperature. Since sampling relies on randomness, both top-k and top-p sampling
can be used to generate multiple alternative outputs, by independently sampling
multiple times. Therefore, they might be suitable methods for generating alternative
translations with a more variable vocabulary.

4.2 Evaluation of Machine Translation
The evaluation of machine translation is a difficult task, that traditionally has been
performed by trained human translators. It is therefore a slow and expensive process.
To make it faster and easier to compare different systems or different version of the
same system, several automatic metrics for MT evaluation have been proposed over
the years. The central idea is that to measure the translation performance, it must be
determined how close a machine translation is to a professional human translation.
Therefore, a numerical score of this “closeness” and a set of high-quality reference
translations is needed to evaluate MT quality.

22

4 Methods

The most widely used measure to compare different MT systems is BLEU (Pap-
ineni et al. 2002), even though it is frequently critiqued to not be a good estimation of
translation quality. Other metrics have found to have better correlation with human
judgment but are not so widespread. This is due to the fact that MT evaluation is
complex and task-dependent and therefore an area of research in itself. The BLEU-
Score is comparatively simple to compute, language independent and correlates rea-
sonably well with human judgment, which has led to its widespread use among MT
researchers (Post 2018). Nevertheless, it lacks specifically in comparability when us-
ing more than a single reference translation, which is why it will not be the only
metric used in this thesis.
The following section will introduce four MT evaluation methods and the advan-

tages or disadvantages they might have, in order to better understand the results
of the multiple output MT system discussed in chapter 6. All of the metrics are
based on the comparison of a candidate translation, which is the decoded output of
the neural network, and one or more reference translations, taken from a test data
set. They are also all based on the measures of precision and recall. Precision is the
fraction of predictions that were correct out of all of the predictions that were made.
For example, when comparing the candidate and the reference sentence, a perfect
precision of 1 would mean all of the words in the candidate are also in the reference.
It would however not mean that the candidate sentence covers all the words in the
reference. Recall is the fraction of predictions that were correct out of the truth, so
how many of the possible correct predictions were actually made. A perfect recall of
1 would mean all of the words of the reference were correctly predicted, but it does
not say anything about additional wrong words that might have been also predicted.

The F1-Score is the harmonic mean of precision and recall. Since neither precision,
nor recall on its own are good measures of accuracy a balance of the two is often taken:

F1 = 2× precision× recall
precision+ recall

(4.2)

F1 is also called balanced F-Score because it weighs precision and recall evenly, but
it can be parameterized to give either one more weight.
The main scoring method in the STAPLE Paper is weighted F1, where recall is

weighted by the learner frequency rate of the accepted translations. In this work F1
will be unweighted as the data set used does not have weights for the target transla-
tions. Instead of on the word level the score is here calculated on the sentence level,
by comparing the set of true translation with the set of predicted translations. It is
calculated for each prompt sentence s with accepted translations set As and predicted
translation set Ps. The number of correct predictions, in this case is the number of
sentences that intersect between Ps and As. Precision (4.3) is then calculated as the
number of correct sentences out of the set of predicted translations and recall (4.4) is
calculated as the number of correct sentences out of the set of accepted translation.

23

4 Methods

precision = |Ps ∩ As|
|Ps|

(4.3)

recall = |Ps ∩ As|
|As|

(4.4)

These F1-Scores for each prompt s are then averaged over the entire test data
set. Note, that this sentence level calculation means that only exact matches of sen-
tences are counted as correct. To make this easier punctuation and capitalization
are ignored. This is therefore only a measure of how many of the provided refer-
ence translation the system generates and not a good measure of translation quality.
Furthermore, the score depends on how many alternative translations are generated.
The following measures in this chapter calculate precision and recall on a word or
n-gram level and are therefore more informative on the overall ability of the system
to generate alternative translations.

BLEU is short for bilingual evaluation understudy and was proposed as an auto-
mated understudy to human translators by (Papineni et al. 2002). It calculates a
score from 0 to 1, although it is often displayed as 0-100, with 1 or 100 being a
perfect match to the reference translation. It is not intended to be used on the
sentence-level but rather averaged over a whole corpus, since sentence-level scores
vary a lot from human judgment and depend heavily on the reference translation
provided. The authors claim this effect cancels itself out when averaged over a test
data set with translations provided by different translators.
The implementation of BLEU is rather simple. It is based on n-gram precision.

The matching n-grams of a candidate translation and a reference translation are
counted, disregarding the order in which they appear, and then divided by the total
number of n-grams in the candidate translations. One problem of precision is that
the repetition of words is rewarded, even when the sequence is highly unlikely.
Given the references “the cat is on the mat” and “there is a cat on the mat” and

the candidate translation “the the the the the the the”, unigram precision would be
7/7 because the word “the” also appears in the references.
In order to overcome this problem BLEU uses a modified n-gram precision. The

idea is that a word should not appear more often in a candidate translation than in
any of the references. So, the maximum number of times the word appears in one
of the references is counted. In this example “the” appears two times in the first
reference. The count of the word in the candidate translation is then clipped by this
maximum: Countclip = min (Count,MaxRefCount). Making the modified unigram
precision of this example 2/7.
The clipped n-gram counts are calculated for each sentence in a test data set,

summed and then divided by the total number of n-grams in all candidate transla-
tions. Giving a modified precision score pn for the entire test corpus. This is done for

24

4 Methods

all n-grams up to a parameter N . Unigram precision would therefore perform exact
word matching to check whether the same words are used, while higher n-grams com-
pare whether or not the sentences have the same structure. All calculated n-gram
precisions are averaged by taking the geometric mean, which is equivalent to the
average logarithm with uniform weights. This is done because precision decreases
exponentially with n, therefore a logarithmic average is used to represent all values
fairly instead of a linear average.
While the modified n-gram precision successfully penalizes translations that are

too long, by not counting n-grams that do not appear in the reference or clipping
n-grams that appear too often, it fails to recognize translations that are too short.
Since the denominator is the total number of n-grams in the candidate translation,
a really short sentence with two words can have a unigram precision of 2/2 if both
words appear in the reference. In this case, even though the references might be much
longer, and the system only translated a small portion of the sentence, it would get
a perfect score.
Therefore, the final step in calculating BLEU is to multiply the score by a brevity

penalty, which is computed over the entire corpus so it does not punish short sentences
harshly. It is calculated using the test corpus’ effective reference length r, which is the
sum of all reference lengths best matching the length of their corresponding candidate
translation and c which is the length of all candidate translations:

BP =
{

1 if c > r.
e(1−r/c) if c ≤ r.

(4.5)

Given all modified n-gram precisions pn of n-grams up to N , uniform weights wn
set to 1/N and the brevity penalty as shown in 4.5, BLEU is calculated as follows:

BLEU = BP× exp
(

N∑
n=1

wn log pn
)

(4.6)

Although BLEU was specifically developed to be used with multiple reference trans-
lations, it is in practice often used with only single reference test data sets. Increasing
the number of references always increases the BLEU score, since it is more likely to
have matching n-grams. Therefore, comparing BLEU scores across different test data
sets is difficult, especially when the number of references differs. This fact, the dif-
ferent parameters like N and other practices like different preprocessing of the data
have led to the critique that BLEU scores are not comparable and therefore incon-
clusive. Matt Post proposed in (Post 2018) that researchers should use the same
BLEU-scheme with official test data sets and no additional preprocessing to make
BLEU a more uniform benchmark. He developed a tool called SacreBLEU1 that
makes it easy to do so.

1The SacreBLEU Python module is available at https://github.com/mjpost/sacrebleu

25

https://github.com/mjpost/sacrebleu

4 Methods

METEOR stands for Metric for Evaluation of Translation with Explicit word Or-
dering. It was developed to explicitly address the weaknesses of BLEU by (Banerjee
and Lavie 2005) and has since been continuously updated to achieve better results.
The main weakness of BLEU is that is does not consider recall, which has been

shown to play a more significant role than precision in achieving high correlation
with human judgment. Recall is the ratio of matched n-grams and the total n-grams
in the reference translation. It is an important score, since it shows how well the
candidate translation covers the content of the reference. BLEU does not consider
it, because it is unclear how to handle recall when considering multiple references.
Furthermore, BLEU’s n-gram matching only indirectly measures sentence structure
with higher order n-grams. It also does not work well on the sentence level, because
when n-gram precisions are calculated for a single sentence and there are no n-gram
matches for one of the values for N the entire score averages out to zero, even when
there are lower order n-gram matches.
METEOR attempts to solve these issues. It uses only unigram matching in three

different stages to find the best alignment of the candidate and reference translation.
An alignment is defined as a mapping between unigrams, in which every unigram
matches with one or zero unigrams in the other sentence. The first stage matches
exact unigrams, the second stage matches unigrams after stemming. Stemming is
the process of reducing a word to its common root form without prefixes, suffixes,
or other modifications. E.g., reducing “playing”, “plays” and “played” to the root
“play”. In the third stage words that are synonyms of each other are matched. It uses
the WordNet database to find synonyms. Each stage matches only the unigrams, that
have not been matched yet, thereby preferring direct matches over stemmed matches
or synonyms.
In each stage the largest subset of mappings that fulfills the alignment criteria is

selected. If there are several subsets of the same size, the one with the least unigram
mapping crosses is selected. Given two unigram mappings (tx, rx) and (ty, ry), with t
being a unigram in the candidate translation at position pos(t) and r being a unigram
in the reference translation at position pos(r), a cross occurs when the result of
(pos(tx)− pos(ty))× (pos(rx)− pos(ry)) is negative.
Considering the example in Figure 4.1, the unigram mappings (tcat, rcat) and (tmat, rmat)

of the candidate “on the mat the cat sat” and the reference “the cat sat on the mat”
cross because (pos(tcat)−pos(tmat))× (pos(rcat)−pos(rmat)) = (5−3)× (2−6) = −8.
This cross can also be visualized as the red crossing lines shown in Figure 4.1.

From the resulting unigram matches, precision P as the number of matched can-
didate unigrams divided by the total number of candidate unigrams, and recall R as
the number of matched candidate unigrams divided by the total number of reference
unigrams, are calculated. An harmonic mean Fmean (4.7) is computed that gives more
weight to recall with the parameter α.

26

4 Methods

Figure 4.1: Visualization of METEOR’s unigram mapping with crosses
(own figure based on (Banerjee and Lavie 2005))

Fmean = PR

αP + (1− α)R (4.7)

Lastly a penalty is computed, to account for word order. For that the matched
unigrams are grouped into chunks. These chunks are n-grams that match exactly
between reference and candidate translation. The fewest possible number of chunks
is selected, so that a perfect translation would result in one chunk and no higher
matching n-grams would result in as many chunks as there are unigram matches.
The penalty is then calculated so that fewer chunks have a small penalty, and more
chunks have a higher penalty:

Penalty = γ ×
(

NumberOfChunks

NumberOfUnigramMatches

)β
(4.8)

The final METEOR Score is calculated as follows :

METEOR = Fmean × (1− Penalty) (4.9)
If there are multiple references, the scores are calculated for each reference and the

best one is chosen. For calculating METEOR for an entire test data set, precision,
recall and the penalty are aggregated over all sentences before the final score is calcu-
lated. Since 2005 METEOR has been updated several times. The current version 1.5
(Denkowski and Lavie 2014)2, includes a fourth stage, that matches paraphrases, in-
cludes more advanced text normalization applied before scoring, has language specific
function word lists with a parameter that gives more weight to non-function words,
as well as additional weights for precision and recall. All parameters are tuned to
maximize correlation with human judgment instead of using fixed values.

2An official Java implementation of METEOR 1.5 is available at https://www.cs.cmu.edu/
~alavie/METEOR/

27

https://www.cs.cmu.edu/~alavie/METEOR/
https://www.cs.cmu.edu/~alavie/METEOR/

4 Methods

ROUGE stands for Recall-Oriented Understudy for Gisting Evaluation and is a
package of several recall-based measures. It was developed by Chin-Yew Lin (Lin
2004) for the evaluation of automatic summarization but can be applied to MT as
well (Lin and Och 2004). Similar to METEOR it was inspired by BLEU and attempts
to solve its issues, like the lack of recall, having no direct measure of sentence structure
and not working on the sentence level.
The following section introduces only a part of the available metrics in the ROUGE

package, explicitly the ones that have shown to be effective in machine translation.
The ROUGE-L metric is an F-Score variation, where precision and recall are based

on the longest common subsequence (LCS) of a candidate and reference translation. A
sequence Z is a subsequence of another sequence X, when the elements of Z appear
in the same relative, but not necessarily continuous order as in X. For example
[A,B,D] is a subsequence of [A,B,C,D]. If two sequences X and Y both have the
same subsequence, it is called a common subsequence. For the calculation of ROUGE-
L the candidate and reference translation are considered to be sequences of words.
The longer the LCS of these sequences, the more similar they are. Precision P is
then calculated as the length of the longest common subsequence LCS(X, Y) of the
candidate sequence X and the reference sequence Y , divided by the length of X.
Recall R is the same LCS(X, Y) divided by the length of Y :

P = LCS(X, Y)
|X|

(4.10)

R = LCS(X, Y)
|Y |

(4.11)

The ROUGE-L score, like all of the ROUGE scores, is then the standard param-
eterized F-Score usually with a weight that favors recall. If there are M references
the best score out of a set of M − 1 references is chosen M times, each time leaving
out a different reference. These scores are then averaged for the final score. Since
LCS compares in-sequence co-occurrences of words that are not necessarily consec-
utive, it measures word order and sentence structure with a flexible approach that
allows for words in between not to match. Considering the example reference “the
cat killed the bird” and two alternative candidate translations “the cat kills the bird”
and “the bird kills the cat”, the LCS of the first candidate is [“the”, “cat”, “the”,
“bird”], while the second is [“the”, “cat”] or [“the”, “bird”]. This would give the first
translation a ROUGE-L score of 4/5 = 0,8 and the second a score of 2/5 = 0,4, when
using a balanced F-Score, clearly showing the first translation to be the better one.
In comparison, both sentences would have the same BLEU score with N = 2, since
they both have four unigram matches (“the”, “cat”, “the”, “bird”) and two bigram
matches (“the cat”, “the bird”).
Another measure called ROUGE-W uses a weighted LCS, to improve the score of

consecutive matches over nonconsecutive matches. The length L of the consecutive

28

4 Methods

word matches in a LCS is counted as Lweight instead of just L in the calculation
of precision and recall. It is therefore stricter regarding sentence structure than
ROUGE-L and rewarding the use of the same word order as the reference.
The ROUGE-S score uses skip-bigram co-occurrences to calculate precision and

recall. A skip-bigram is a pair of words in a sentence, that are in their sentence
order, with an arbitrary gap in between. Using the same example given earlier, the
sentence “the cat killed the bird” has 10 skip-bigrams: (“the cat”, “the killed”, “the
the”, “the bird”, “cat killed”, “cat the”, “cat bird”, “killed the”, “killed bird”, “the
bird”). This is equal to the combination C(n, k) = n!

(n−k)!k! with k = 2 and n being
the length of the sentence.
Given a candidate sentence X and a reference sentence Y , SKIP2(X, Y) as the

number of skip-bigram matches between the two, C(|X|, 2) and C(|Y |, 2) as the
number of all skip-bigrams in the candidate and reference respectively, precision and
recall are calculated as follows:

P = SKIP2(X, Y)
C(|X|, 2) (4.12)

R = SKIP2(X, Y)
C(|Y |, 2) (4.13)

ROUGE-S counts consecutive matches as well as flexible matches with words in
between. It is therefore sensitive to word order and overall sentence structure. For
more efficient computation in longer sequences the gap that is allowed to be between
the words of a skip-bigram is usually limited by a parameter dskip. Candidate sen-
tences that only have unigram matches and no skip-bigram matches get a ROUGE-S
score of zero. To still count those sentences an extension called ROUGE-SU, that
additionally counts unigram matches, is sometimes being used.

29

5 Experiments
The following chapter outlines the design of the experiments in this thesis. First,
the technical implementation and the tools used are described. This includes the
framework for finetuning the T5 model, the data preparation process and the imple-
mentation and specifications of the four decoding algorithms that are investigated in
chapter 6. Then, the training process and the chosen hyperparameters are described.

5.1 Implementation
The experiments for finetuning the T5 model, the decoding algorithms, as well as all
evaluation metrics except for METEOR are implemented in Python. The model is
built with PyTorch Lightning (Falcon 2019), an open-source Python library, that pro-
vides a light-weight implementation of the PyTorch deep learning framework (Paszke
et al. 2019). It is intended to help researchers spend less time on engineering and
more on research, while still keeping all the functionality of PyTorch.
The T5 model checkpoint that is used to initialize the PyTorch model and the

pretrained SentencePiece tokenizer for T5 are provided by the Hugging Face Trans-
formers library (Wolf et al. 2020). The model architecture with all of the layers and
the pretrained weights are stored in this checkpoint, which makes it easy to build on
for finetuning.

input Wie heißt dein jüngerer Bruder?
tokenized [Wie, heißt, de, in, jüng, er, er, Bru, der, ?, </s>, <pad>, <pad>]
tensor [2739, 13172, 20, 77, 30683, 49, 49, 9465, 588, 58, 1, 0, 0]
atn. mask [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]

Table 5.1: Example of data preparation with maximum token length = 13

The data is loaded as DataFrames with the pandas library (McKinney 2010). It is
then prepared as a PyTorch Dataset, by splitting the lines into inputs and targets,
which are then tokenized to subwords and converted to PyTorch Tensors. Tensors
are a data structure similar to vectors and matrices, that can run on GPUs. In order
to give all inputs and targets the same length, they are padded to a maximum token
length of 110 for the German sentences and 100 for the English translations. In
addition to the input id tensors an attention mask is generated for each input and
target, that indicates which tokens should be taken into account and ignores padding

30

5 Experiments

tokens. Unlike the original T5 implementation, no prefix like “translate German to
English:” is added to the input. Since this is the only task in which the input is not
English, the model recognizes the task without the prefix. It is therefore omitted to
keep the input sequences short. An example of the data preparation process is shown
in Table 5.1.
A PyTorch Lightning DataModule is implemented to load data sets for training,

validation, and testing. These data sets are then split into batches for training. The
examples in the training data are shuffled, while the ones for validation and testing
are kept in order.
The training is implemented with the PyTorch Lightning Trainer module, that

automatically takes care of logging, multiple GPU support and batch iteration. For
more efficiency two additional callbacks are implemented in the trainer. The check-
point callback ensures that only the best checkpoint is saved. For that the validation
loss is monitored during training and a checkpoint is saved only if it is better than
the previous checkpoint. This saves the unnecessary storing of big checkpoints for ev-
ery training epoch. In another callback, early stopping is implemented, which stops
training if the validation loss does not improve for more than three epochs. This
makes training much faster.
The four different decoding algorithms described in Section 4.1, are implemented

using the generate function from the Hugging Face transformers library. For each
German input sentence three alternative English translations are generated from the
model output. In addtition to the test data from the Tatoeba corpus, translations
are generated from the WMT14 newstest2014 German data. This is a common data
set for testing NMT and is one of the recommended data sets in the SacreBLEU
library to report BLEU scores on. It is also the same test data the authors of the T5
paper used to report BLEU scores for English to German translation. The data set
contains 3,003 sentences of the news domain.
The input sentences are tokenized and padded to a max length of 180 before they

are fed into the model. The maximum output length is set to 150 tokens. From the
model output ids are generated using the different decoding algorithms. These ids
are then detokenized skipping special tokens like padding tokens or end-of-sequence
(EOS) tokens, to form a text string again. After all the translations are generated,
they are stored in TSV files, so they can be analyzed and scored later.
For the beam search algorithm, the beam width B is set to 10 and early stopping

is implemented to stop generation when all beams reached an EOS token. For the
implementation of diverse beam search the number of groups is set equal to the
number of beams G = B = 10, to have the most possible diversity in the groups.
The penalty for tokens used in other groups is set to 1.5. In the sampling methods k
is set to 10 for top-k sampling and p is set to 0.9 for top-p sampling.
Each decoding algorithm generates 10,518 translations, 9,009 for the WMT14 data

set and 1,509 for the German-English data set created from the Tatoeba corpus.

31

5 Experiments

5.2 Training
The hyperparameters chosen for this training are based on the finetuning experiments
in the T5 paper but are modified for the data and the hardware available. Adafactor
is used as the optimization algorithm with a constant learning rate of 0.001. Instead
of a batch size of 128 a batch size of 64 is used to fit on the available hardware. To
save some computation the maximum sequence length is shortened to 110 tokens,
which is equal to the longest sequence in the data set. This makes the batches much
smaller and easier to process. Only the best checkpoint according to validation is
used for translating.
The training is done on a Linux virtual machine running in a Docker container on

the university server of the HAW Hamburg. It is using five NVIDIA Quadro P6000
graphic cards. During training and validation German inputs are repeated, but each
time a different English translation is given as the target. By explicitly showing the
model alternative translation it will hopefully be able to produce more alternative
outputs.

(a) Training loss (b) Validation loss

Figure 5.1: Development of loss in the model versions 1 (blue) and 2 (red)
(Screenshot Tensorboard)

Two versions of the model were trained, one with early stopping and one without.
The first version stopped training after 5 epochs and about 1,000 steps, because the
validation loss was lowest in the second epoch. The second version trained for longer,
but the validation loss did only increase with more training. This is to be expected
when training such a large model on a relatively small amount of data. The model
overfits easily and memorizes the training data instead of learning to generalize, which
leads to decreased performance on new data. This phenomenon can be seen in Figure
5.1, where the training loss (see 5.1a) slowly decreases over time, but the validation
loss (see 5.1b) increases quickly after an initial drop.
The validation loss was lowest for both version on global step 397. Version 2

reached a slightly better value of 0.7329 than version 1 with 0.7358. Therefore, the
generation of translations will be done with the best checkpoint of version 2.
With the computational power of five GPUs and a batch size of 64, each epoch took

about five minutes. Version 1 trained for 25 and version 2 trained for 100 minutes.

32

6 Results
The goal of the experiments in this thesis is to investigate, which decoding methods
work best for generating multiple meaning equivalent translations with alternative
language patterns, such as different sentence structures or use of vocabulary. To
evaluate the translations of each decoding algorithm, the outputs are scored with
different metrics. The following chapter first analyzes these scores and what they
might indicate about the generated translations. Afterwards, examples are shown for
each method and the quality and diversity of the output is discussed.

6.1 Metrics

Metric Beam
Search

Diverse Beam
Search

Top-K
Sampling

Top-P
Sampling

F1-Score 32.80 27.76 24.26 26.32
Precision 29.03 25.48 25.25 28.16
Recall 38.96 31.76 24.96 26.56
BLEU (all) 53.43 48.53 46.42 50.04
BLEU (first) 60.26 57.78 46.55 48.43
BLEU WMT (all) 19.55 17.37 13.72 14.59
BLEU WMT (first) 19.72 18.55 13.77 14.58
METEOR 44.51 41.38 40.88 42.61
ROUGE-L 63.88 58.23 60.03 62.25
ROUGE-W 49.87 45.55 46.95 48.72
ROUGE-S 42.48 37.22 38.60 40.79
ROUGE-SU 48.63 43.16 44.85 46.96

Table 6.1: Scores of the decoding methods (scaled to be between 0-100 for readability)

All metrics shown in Table 6.1 except for METEOR, for which the official Java
implementation with pre-tuned parameters is used, are implemented using Python.
For the calculation of BLEU, the SacreBLEU python library is used with the standard
parameter of N = 4, mixed case evaluation, exponential smoothing and the WMT
standard “13a” tokenization as suggested in “A Call for Clarity in Reporting BLEU
Scores” (Post 2018). Since BLEU is very sensitive to differences in the data set, the
scores are also reported on the WMT14 newstest2014 data set for comparability to

33

6 Results

other systems. ROUGE scores are calculated using PyRouge1 from the rouge_metric
library. For all ROUGE scores the balanced F-Score (F1) is reported. The weight
for ROUGE-W is set to 1.2 and the skip gap dskip is set to 4 for ROUGE-S and
ROUGE-SU. Sentences are tokenized by white space.
All scores reported on the German-English test data from the cleaned Tatoeba

data are scored using all the available references, which range from 2 to 8 references
per prompt.

Beam Search scored the best in all metrics. It reached a high F1-Score and a
very high recall, which suggest it covered the given reference translations the best.
It means 39% of the references were exactly reproduced. Assuming the references
are correct, this score should indicate how many translations were at least correct.
The actual number of correct translations is presumably higher, because only exact
reference matches are counted. Since three translations are generated and most sen-
tences in the data have two references, it is more likely to have a high recall over high
precision.
The F1-Score reached is comparable to the first ranking Japanese system or fifth

ranking Portuguese system assessed in the STAPLE paper. Although Portuguese is
closer to German since both are Indo-European languages and it is therefore a better
analogy. Note that this is only a very loose comparison, considering that other data
was used, and the score is not weighted in this case.
BLEU-scores for the non WMT data are very high, because BLEU increases with

multiple references. When comparing all translations vs only the first output of beam
search, the BLEU score drops significantly (see Table 6.1). This suggests the quality
of the lower scored beams is less in comparison to the highest scoring beam. Although
this effect seems to cancel itself out when longer sentences are used like in the WMT
data. This can be explained by the lack of variety in beam search leading to sentences
with only one or two different words. These small differences have less of an impact
in longer sentences but can hurt the score when the sentence only has a few words.
Although a BLEU score of 19.55 on the WMT14 data is comparatively low, the

finetuned T5-Base model for example reached a score of 30.9 in English to German
translation on the same data, it is still an adequate score considering only 66.000
examples were used for finetuning (vs. 4.5 million in T5) and the training data is not
of the same domain as the test data. The sentences in newstest2014 are considerably
longer and more complicated with much more news specific vocabulary.
Beam Search also got the highest METEOR score with 44.51. This means, that

the candidate translations have a lot of matching unigrams with the references. Out
of roughly 12.000 words 10.000 were matched, this is a lot when considering that
not all words can be matched since translations do not always match word to word.
Especially in German, where nouns are often concatenated, one noun would match

1A fast Python implementation of full ROUGE metric available at https://github.com/li-
plus/rouge-metric

34

https://github.com/li-plus/rouge-metric
https://github.com/li-plus/rouge-metric

6 Results

with several words in English, but the calculation of METEOR only allows for one
match. Almost all words were matched in the first stage (the exact stage) and only
a small portion of synonym and paraphrase matches were found. Before adding
the penalty to account for word order, the F-Score of METEOR was about 81, but
the score suffers from the fragmentation penalty. The matches were grouped into
2.495 chunks for the 1.509 sentences, which averages to 1.7 chunks per sentence. This
suggest, that while the vocabulary use in the sentences was good, the overall structure
of the sentences was different from the references, or some non-matching words in
between resulted in more chunks and therefore a higher penalty.
The difference in structure can also be seen when comparing the different ROUGE

scores. While ROUGE-L is always fairly high ROUGE-W is always about 14 points
lower. This means that there are a good number of words in the same relative order as
the reference, but they are not consecutive. So, the structure is not exactly like in the
reference or single words in between do not match. ROUGE-S is even more sensitive
to word order, the score is lower. The counting of additional unigram matches results
in a ROUGE-SU score about 6 points higher.

Diverse Beam Search scored the worst in all ROUGE scores, but second best in
all BLEU scores. Like normal beam search, it has a high recall, covering about 32%
of the references.
Although, the BLEU scores are still high, DBS has the largest drop of 9 points when

comparing only the first and all three translations. The quality seems to decrease
even more than normal beam search. It is also the only decoding method with a
significant drop when comparing the first and all translations of the WMT data.
This means the second and third translations are more dissimilar from the reference.
This proves that the output of DBS is significantly more diverse, than that of beam
search. It hurts the overall scores of the method because the references have mostly
the same sentence structure and a different, although correct structure would result
in a lower score. This also explains the low ROUGE scores because they measure
word order.
The METEOR score for DBS is only slightly better than the lowest score. It reaches

an F-Score of 77. It has less word matches than beam search but more chunks (2.727)
leading to higher fragmentation penalty. It has also less exact matches in the first
stage and more paraphrase matches in the last stage, suggesting DBS produces more
alternative vocabulary.

Top-K Sampling has the lowest scores overall, but scores higher than DBS in the
ROUGE scores. It has the lowest F1-score due to having a low recall score. Precision is
higher than recall unlike the previous methods. A high precision means all generated
translations are in the set of references. This is unlikely because for most sentences
the number of generated translations is higher than the number of references. Since
it is nevertheless the case here, it indicates that there might be repetition in the

35

6 Results

translations. Repetition is rewarded by precision (see 4.2).
When sampling independently from the same probability distribution, there is a

chance to sample the same exact sequence several times, especially when the distribu-
tions are sharp. Looking at the generated output of the top-k sampling method, out
of the 503 translated sentences 174 had repeated sentences in their set of translations,
which is about 35%. Out of those sets with repetition, 146 times two equal sentences
were generated and 28 times all three translations were the same.
The repetition also explains why there is no drop in the score when comparing

only the first to all three translations in the BLEU score, since a significant number
of translations are the same. The BLEU scores are also low compared to the other
methods indicating that none of the generated candidates match well with the ref-
erences. This is especially the case for the WMT data, where sampling scores the
lowest. This can be due to length or more complicated vocabulary which apparently
suffers when allowing to sample from potentially low probability words.
The Top-k sampling method also has the lowest METEOR score, due to having the

highest number of chunks of 2,831 and lowest F-Score of 76.5. Although it matched
more words than diverse beam search.
In the ROUGE scores top-k sampling beats DBS, suggesting that while the overall

quality of the translations is worse, the sentence structure might be similar to the
ones of the references. This could be due to high probability function words still
matching, even if the content words do not.

Top-P Sampling scored surprisingly well across the metrics. Although it is also a
sampling method, it achieves significantly better scores than top-k sampling. Espe-
cially the BLEU, METEOR and ROUGE scores are comparable to the ones of beam
search.
It also has higher precision than recall, due to repetition. Top-p sampling repeated

itself even more than top-k, 207 translation sets had repetitions (about 41%). Two
duplicate sentences were generated 165 times and three equal sentences 42 times.
The BLEU score of all three translations (50.04) is better than the one of a single

output translation (48.43). None of the other methods improve in that way. This
could be due to the random sampling sometimes producing bad translations, but the
error seems to average out when sampling more times. Although this only seems to
be the case for shorter sentences, since both WMT BLEU scores are almost the same.
The METEOR score is similar to beam search. The F-score reached is 78.5 and

2.636 chunks are grouped together. The number of matched words in all stages is
also very similar to the ones in beam search. Furthermore, all ROUGE scores are
about as high as in beam search. Suggesting word order to be similar to the reference.

Based solely on the metrics, beam search is the best decoding method, followed by
top-p sampling. Although one has to keep in mind, that the data used for testing does
not have an extensive number of references and the ones provided often differ only

36

6 Results

slightly. This might explain the good scores of beams search, since it often produces
very similar outputs.
Diverse beam search on the other hand does indeed seem to generate diverse out-

puts. It especially loses in scores that measure word order strictly and do not allow
deviation from the reference.
The sampling methods perform worse on the WMT data, they do not seem to work

well with longer sentences. The high repetition also makes them less suitable for
generating alternative outputs. Nevertheless, the outputs of top-p sampling resemble
the ones of beam search and it might pose a good alternative.

6.2 Discussion
Given the information of the scores, a few assumptions can be made regarding the
diversity of sentences, translation quality, sentence structure and vocabulary use.
In the following section these assumptions are discussed with the help of example
translations that support them.

Sentence Structure
While all decoding algorithms should be able to produce different sentence structures
in theory, the differences in ROUGE scores suggest, that diverse beam search in
particular produces different structures. Beam search is often critiqued for producing
very similar outputs and the high scores it achieved suggest that the structure of the
outputs is similar to the ones of the references and have therefore less variety. The
sampling methods reached good ROUGE scores even when the other scores were low,
also indicating matches in sentence structure.
Looking at Table 6.2 we can see clearly that all algorithms are able to start the

sentence in different ways, starting either with “There is a car” like the reference, or
with “A car is”. However, DBS is the only method that produced a sentence starting
with the second part of the sentence “In front of the church” and thereby reversing
the sentence structure. This is also a more direct translation of the original German
sentence.
The example also shows that the outputs of beams search and top-p sampling are

almost identical, which was also indicated by the evaluation metrics. Top-k sam-
pling on the other hand, produces slightly different outputs, some of which are good
alternatives (the use of “vehicle” instead of “car”), and some include capitalization
errors.
Another example shown in Table 6.3, indicates that beam search might indeed be

the least flexible, when it comes to sentence structure. Every output starts with “I
don’t” and only the translations for “only” and “study” differ. Diverse beam search
manages to produce three completely different beginnings and both sampling methods
have two different beginnings and also sometimes end the sentence with “but French
as well” instead of “but also French”.

37

6 Results

German Vor der Kirche steht ein Wagen.

References There is a car in front of the church.
There’s a car in front of the church.

BS
There is a car in front of the church.
A car is in front of the church.
A car is standing in front of the church.

DBS
A car is in front of the church.
There is a car in front of the church.
In front of the church is a car.

Top-K
a car is in front of the church.
A car is in front of the church.
There’s a vehicle in front of the church.

Top-P
A car is standing in front of the church.
A car is in front of the church.
There’s a car in front of the church.

Table 6.2: Example 1: Sentence Structure

German Ich lerne nicht nur Englisch, sondern auch Französisch.

References
I not only study English, but I also study French.
I not only study English, but I study French, too.
I’m not only studying English, but I’m also studying French.

BS
I don’t only study English, but also French.
I don’t just study English, but also French.
I don’t only learn English, but also French.

DBS
I don’t only study English, but also French.
I am not only learning English, but also French.
Not only do I study English, but also French.

Top-K
I do not just study English, but also French.
I am not only studying English, but also French.
I don’t just study English, but French as well.

Top-P
I do not just study English, but also French.
I am not only studying English, but also French.
I don’t just study English, but French as well.

Table 6.3: Example 2: Diverse Sentence Structures

38

6 Results

Vocabulary Use
Words can have multiple meanings or have synonyms or can be otherwise worded
differently depending on the context. Some translations, although less likely accord-
ing to the probability distribution of the NMT output, are good alternatives. Given
that the sampling methods rely somewhat on randomness, they should have more
variety when it comes to vocabulary use. Beam search, being a greedy algorithm is
less likely to pick low probability words. This is also true for Diverse beam search,
but the diversity penalty might force the algorithm to choose lower probability words.
The METEOR score directly measures synonym and paraphrase matches and DBS
had much more of them than beam search, suggesting a difference in vocabulary use.

German Ich war erstaunt, als ich erfuhr, dass ich gewonnen hatte.

References I was amazed to learn I’d won.
I was amazed to learn I had won.

BS
I was astonished when I learned that I had won.
I was astonished when I realized that I had won.
I was astonished when I learned that I won.

DBS
I was surprised when I learned that I had won.
When I realized that I had won, I was surprised.
I was shocked when I realized I had won.

Top-K
I was astonished when I learnt that I had won.
I was thrilled when I discovered that I had won.
I was surprised when I found out that I had won.

Top-P
I was astonished when I heard that I had won.
I was astonished when I found out that I won.
I was astonished when I learned that I won.

Table 6.4: Example 3: Variety in Vocabulary Use

The third example (Table 6.4), shows a variety of different translations for the
words “erstaunt” (eng. “amazed”) and “erfuhr” (eng. “learned”). Beam search has
little variation. It always uses “astonished” and only replaces “learned” with “real-
ized” once. Diverse beam search also uses “learned” and “realized”, but also varies
between “surprised” and “shocked”, of which the former is a good synonym, and the
latter might be acceptable in this case but has usually a more negative meaning. Sim-
ilarly, the use of “thrilled” in the top-k output is an acceptable but somewhat more
positively worded translation. Top-k uses the most different translations, producing
three different words for both “amazed” and “learned”. The output of top-p is very
similar to that of beam search, but has more variety in the second half, also using
“found out” and “heard” as alternatives.

Of course, too much variety in the generated words can also hurt the translation
quality, when wrong translations are chosen. Especially top-k sampling, having the
lowest scores, is probably affected by such errors.

39

6 Results

German Russisch ist meine Muttersprache.

References Russian is my mother tongue.
Russian is my native language.

BS
Russian is my mother tongue.
Russian is my native language.
Russian is my first language.

DBS
Russian is my mother tongue.
Russ is my mother tongue.
Romanian is my mother tongue.

Top-K
French is my mother tongue.
Russian is my mother tongue.
It is my native language.

Top-P
Russian is my native language.
Russian is my native language.
Russian is my mother tongue.

Table 6.5: Example 4: Good and Bad Vocabulary Variation

The example shown in Table 6.5 is a relatively short sentence, that does not have
too many different translations. The only possible variety is in the translation of
“Muttersprache”, which can be either “mother tongue”, “native language”, “first
language” or also “native tongue”.
Beam search is able to accurately display this variation, while all other algorithms

fail to do so. The diversity penalty in diverse beam search seems to force the algo-
rithm to pick different beginnings for the sentence leading to wrong translations of
“Russian”. Top-k samples from unlikely words and produces “French” or simply “it”
instead of “Russian”. While Top-p sampling produces the two references perfectly, it
fails to produce a third valid translations and instead repeats itself.

Repetition
Since the goal was to create alternative translations, the repetition of outputs, which
is a big problem in the sampling methods as indicated by the high precision, is
damaging. It is likely to happen in short sentences, where the probability distribution
is sharp, like the example in Table 6.6.
Since there is so little possibility for different translations, none of the algorithms

produced really good outputs. Although beam search at least has three different
outputs, while all others repeated themselves. Repetition is not such a big problem
in DBS only 42 sentences were repeated in total. Usually, the diversity penalty should
punish repetition, but if there are no good words to choose from DBS starts generating
strange outputs, like repeated punctuation marks or additional white spaces. The
sampling methods have a very high chance to just sample the same thing two or even
three times.

40

6 Results

German Der Lehrer kam herein.

References The teacher came in.
The teacher walked in.

BS
The teacher came in.
The teacher got in.
The teacher came inside.

DBS
The teacher came in.
The teacher came in.
The teacher came in..

Top-K
The teacher came in.
The teacher came in.
The teacher came in.

Top-P
The teacher came in.
The teacher came inside.
The teacher came in.

Table 6.6: Example 5: Repetition

Quality
While all algorithms except for top-k sampling scored fairly well across the Tatoeba
data, the BLEU scores for the WMT data are quite low. This can have several
reasons. First, the data set only contains one reference sentence, which affects the
score negatively due to less possible matches. The sentences are also much longer
and more complicated, than the data the model was trained on. Furthermore, they
are of a different domain and might contain out of vocabulary words, that the model
has never seen before.
Nevertheless, the WMT sentences might provide a good overview of the overall

translation quality of the different decoding methods, showing which method gener-
ates fluent sentences that also make sense. The sampling methods scored significantly
lower on this data set, which suggest they are less likely to provide good translations
when it comes to longer sentences or complicated vocabulary. The beam search meth-
ods, on the other hand, seem to produce a somewhat better quality, even though the
diverse beam search output gets less reliable in the second and third translation.
The example in Table 6.7 shows translations of a sentence from the WMT data

set. To correctly capture the meaning of the sentence the translation should include
that the euro crisis is not caused by national governments creating budget deficits,
except in Greece.
Beam search produces fluent sentences, that almost reproduce the meaning. It

only fails to describe that the national governments are the ones causing budget
deficits and not suffer from it. The same is true for diverse beam search, except
for the last sentence, which has a completely different meaning and does not even
mention national governments or budget deficits. This supports the assumption that
the quality of translations decreases with more outputs in DBS.

41

6 Results

The sentences of top-k sampling change the meaning even further, instead of
“deficits” it produces “constraints” and “shortage”, which are not the same thing.
The second sentence even suggest a “monetary” crisis was prevented in Greece, which
is a completely different meaning. Additionally, the output is less fluent as it con-
tains grammatical errors, like using “Greek” instead of “Greece” and missing words
in “only in Greece was the case”.

German Die Krise des Euro hat wenig damit zu tun, dass nationale Regierungen
exzessive Haushaltsdefizite verursachen – das war nur in Griechenland
der Fall.

References The crisis of the euro has little to do with national governments running
excessive budget deficits - that was true only of Greece.

BS

The crisis of the euro has little to do with national governments suffering
from severe budget deficits – that was only the case in Greece.
The Euro crisis has little to do with national governments suffering from
severe budget deficits – that was only the case in Greece.
The crisis of the euro has little to do with the fact that national gov-
ernments suffer from severe budget deficits – that was only the case in
Greece.

DBS

The crisis of the euro has little to do with national governments suffering
from severe budget deficits – that was only the case in Greece.
The Euro crisis has little to do with national governments suffering from
severe budget deficits – that was only the case in Greece.
There is little to be worried about the crisis of the euro, as it only
happened in Greece.

Top-K

The crisis of the euro has little to do with national governments endur-
ing severe budgetary constraints – only in Greece was the case.
The monetary crisis has little to do with the failure of national govern-
ments to deal with the shortage of budgets – the only thing that was
done in Greek was to prevent it from happening.
The crisis of the euro has nothing to do with the national governments
struggling with budget deficits – this was only the case in Greece.

Top-P

The Euro crisis has little to do with the national governments suffering
from high budgets — it was only Greece’s fall.
The Euro crisis doesn’t have much to do with national governments
declaring extreme budget deficits, as in Greece.
The crisis of the euro doesn’t mean that national governments are suf-
fering from deficits in budgets – this was just the case in Greece.

Table 6.7: Example 6: Translation quality in complicated sentences

Top-p sampling produces sentences that are a little more fluent and better repro-
duce the meaning, then the ones of top-k sampling. In the first sentence, the wrong
translation of the German word “Fall”, which can mean either “case” or “fall”, is

42

6 Results

chosen. Also “high budget” is almost the opposite of “budget deficit” and therefore
wrong. The second and third translations are better, although “as in Greece” is oddly
worded.

All methods have advantages and disadvantages. Beam search has the overall best
quality, but it is less diverse. It is very good at producing multiple high-quality
sentences, that differ slightly in wording, use abbreviated and unabbreviated forms
correctly (e.g. “you’re” and “you are”), change the vocabulary used a little and
sometimes even provide some variety in sentence structure. Diverse beam search
produces similar outputs at first but then provides much more variation in the next
outputs. It is especially good at producing different sentence structures but has the
disadvantage of decreasing quality when there are not many options to word things
differently.
The advantages of both methods could be combined by running the diverse beam

search algorithm with a different set of parameters (see Table 6.8). Setting B > G,
allows for beam search to run normally within a group, while the diversity penalty
ensures differences between the groups. This might produce a set of translations
with both the little nuances in wording of beam search and the different sentence
structures of diverse beam search.

German Von diesem Buch gibt es noch keine französische Ausgabe.

References This book still hasn’t been translated into French.
There’s still no French translation of this book.

DBS

There’s no French edition of this book yet.
There is no French edition of this book yet.
There’s no French edition of this book.
This book has no French edition.
There is no French edition of this book.
There’s no French edition of this book yet!
This book isn’t yet translated into French.
This book isn’t translated yet.
This book isn’t available in French yet.

Table 6.8: Example 7: Diverse Beam Search with B = 9 and G = 3

Top-k sampling has the most creative vocabulary use, which can be very good in
some cases, but hurts the quality in others. Either the words are translated wrong,
or it produces a completely nonsensical output. Top-p sampling on the other hand, is
surprisingly good and often produces very similar outputs to beam search. It even has
some more creative vocabulary use and variety in sentence structure. Occasionally
this hurts the translation quality, especially on longer sentences, but works very well
on shorter sentences like the one used on Tatoeba. Both sampling methods have the
disadvantage of having very high repetition when sampling independently multiple

43

6 Results

times. This could be improved by penalizing tokens that have been sampled before,
or otherwise force the algorithm to produce different outputs.

44

7 Conclusion
In this thesis a neural machine translation model, that can produce multiple al-
ternative translations, has been developed. With the help of transfer learning the
transformer model could be trained with a relatively small amount of data and in a
short amount of time. During training, the model was explicitly shown alternative
translations for the given input, in order to produce variance in the output. Although
the translation quality of the network does not compare with other networks of simi-
lar size on standard test data, that has longer sentences and is of a different domain,
the model has shown to be able to produce correct alternative translations on short
sentences of the same domain as the training data.
The analysis in this thesis has shown, that the algorithm chosen to decode the

model output, has a noticeable effect on the translations produced. This can be
seen in a variety of different automatic scoring metrics for the evaluation of machine
translation, as well as in human evaluated examples.
The specific algorithms investigated in this thesis all produce different variations

within a set of generated translations. Beam Search produces the best quality sen-
tences overall, but they only differ slightly in word choice and structure or produce the
same sentence with and without contractions. Diverse beam search shows promising
results in producing different sentence structures but suffers in quality when it ex-
hausted the possible word orders, resulting in either grammatical or semantic errors.
Top-k sampling has the most creative vocabulary use, which can result in interesting
and less direct translations, but most of the time it results in nonsensical translations,
that do not convey the same meaning and are syntactically incorrect. Top-p sampling
is very comparable to beam search and often produces similar sentences. Although
it is somewhat less accurate, it is more diverse when it comes to word choice and
structure.
In future work, other decoding methods, that have not been included in this thesis

could be investigated. The sampling methods can also be combined or altered with
a parameter like the temperature to further improve their output. Furthermore,
penalties during sampling or a filtering method could be implemented to solve the
problem of repetition. Over-sampling and filtering can be used on sampling as well as
beam search-based methods to get a more diverse set of translations. Given the clear
benefit of beam search producing correct translations more consistently and sampling
producing more diverse and interesting outputs, another option might be to combine
the two approaches in order to have both of these advantages. Stochastic beam
search is a variant of beam search, that performs beam search over stochastically
perturbed log-probabilities and can be seen as a connection of sampling and beam

45

7 Conclusion

search. Therefore, it could be another interesting decoding algorithm for producing
multiple alternative translations.
It should also be kept in mind, that the results of this thesis depend on the test

data that has been used. For a more conclusive interpretation, further testing with
better data is necessary. Data sets for evaluating machine translation should have a
more extensive set of references, in order to accurately measure the performance of
a model. Since there is not one single correct translation, the data used for judging
translation quality should represent that fact.
On a related topic, further research should also focus on the automatic evaluation

of machine translation. Different metrics that are intended to measure translation
quality have been shown to vary considerably on the same set of candidates and
references. The way the scores a calculated, means that they represent different parts
of the similarity between candidate and reference sentence. While some focus more
on over-all structure, others focus more on word matches. Capturing the complex
aspects of language that differentiate good from bad translations in a numerical score
is a difficult task. Research in this direction has to include a way to incorporate
multiple different translations in a meaningful way and also try to make scores more
consistent and comparable. This would allow further improvement in the quality of
machine translation to be more measurable.
Machine translation has not yet reached a human level. Better translation systems

can help people all over the world to communicate with each other. Although the
quality of these systems has significantly increased with the rise of neural machine
translation, the complexity of natural languages and the vast differences between
them will continue to make machine translation a challenging task.

46

List of Figures

2.1 Visualization of Attention with reversed word order (Bahdanau et al.
2014) . 9

2.2 The Transformer model architecture (Vaswani et al. 2017) 10
2.3 Scaled Dot-Product Attention in detail (left) and Multi-Head Atten-

tion with several parallel heads (right)(Vaswani et al. 2017) 12
2.4 The pretrainig objective used in the T5 models (Raffel et al. 2020) . . 15

4.1 Visualization of METEOR’s unigram mapping with crosses (own figure
based on (Banerjee and Lavie 2005)) 27

5.1 Development of loss in the model versions 1 (blue) and 2 (red) (Screen-
shot Tensorboard) . 32

47

List of Tables

3.1 Sizes of the STAPLE data sets (Mayhew et al. 2020) 16
3.2 Size of the German-English data set 18

5.1 Example of data preparation with maximum token length = 13 . . . 30

6.1 Scores of the decoding methods (scaled to be between 0-100 for read-
ability) . 33

6.2 Example 1: Sentence Structure . 38
6.3 Example 2: Diverse Sentence Structures 38
6.4 Example 3: Variety in Vocabulary Use 39
6.5 Example 4: Good and Bad Vocabulary Variation 40
6.6 Example 5: Repetition . 41
6.7 Example 6: Translation quality in complicated sentences 42
6.8 Example 7: Diverse Beam Search with B = 9 and G = 3 43

48

Bibliography
[Bahdanau et al. 2014] Bahdanau, Dzmitry; Cho, Kyunghyun; Bengio, Yoshua:
Neural Machine Translation by Jointly Learning to Align and Translate. (2014).
https://arxiv.org/abs/1409.0473

[Banerjee and Lavie 2005] Banerjee, Satanjeev; Lavie, Alon: METEOR: An Au-
tomatic Metric for MT Evaluation with Improved Correlation with Human Judg-
ments. In: Proceedings of the ACL 2005 Workshop on Intrinsic and Extrinsic
Evaluation Measures for MT and/or Summarization, 2005

[Cho et al. 2014] Cho, Kyunghyun; Merriënboer, Bart van; Gulcehre, Caglar;
Bahdanau, Dzmitry; Bougares, Fethi; Schwenk, Holger; Bengio, Yoshua:
Learning Phrase Representations using RNN Encoder–Decoder for Statistical Ma-
chine Translation. In: Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP). Doha, Qatar: Association for Compu-
tational Linguistics, October 2014, 1724–1734

[Denkowski and Lavie 2014] Denkowski, Michael; Lavie, Alon: Meteor Universal:
Language Specific Translation Evaluation for Any Target Language. In: Pro-
ceedings of the Ninth Workshop on Statistical Machine Translation. Baltimore,
Maryland, USA: Association for Computational Linguistics, June 2014, 376–380

[Eberhard et al. 2021] Eberhard, David M.; Simons, Gary F.; Fenning,
Charles D.: Ethnologue: Languages of the World. https://www.ethnologue.com/.
edition: 24, 2021, Accessed: 06.07.2021

[Falcon 2019] Falcon, WA: PyTorch Lightning. https://github.com/
PyTorchLightning/pytorch-lightning/. 2019, Accessed: 23.06.2021

[Fan et al. 2018] Fan, Angela; Lewis, Mike; Dauphin, Yann: Hierarchical Neural
Story Generation. (2018). https://arxiv.org/abs/1805.04833

[Hochreiter 1991] Hochreiter, Josef: Untersuchungen zu dynamischen neuronalen
Netzen. München, Germany, Technische Universität München, Diplomarbeit, 1991

[Hochreiter and Schmidhuber 1997] Hochreiter, Sepp; Schmidhuber, Jür-
gen: Long Short-Term Memory. In: Neural Computation 9 (1997), November,
pages 1735–1780. http://dx.doi.org/10.1162/neco.1997.9.8.1735. – DOI
10.1162/neco.1997.9.8.1735. – ISSN 0899–7667

49

https://arxiv.org/abs/1409.0473
https://www.ethnologue.com/
https://github.com/PyTorchLightning/pytorch-lightning/
https://github.com/PyTorchLightning/pytorch-lightning/
https://arxiv.org/abs/1805.04833
http://dx.doi.org/10.1162/neco.1997.9.8.1735

Bibliography

[Holtzman et al. 2019] Holtzman, Ari; Buys, Jan; Du, Li; Forbes, Maxwell;
Choi, Yejin: The Curious Case of Neural Text Degeneration. (2019). http:
//arxiv.org/abs/1904.09751

[Internet World Stats 2021] Internet World Stats: INTERNET WORLD
USERS BY LANGUAGE. https://www.internetworldstats.com/stats7.htm.
2021, Accessed: 06.07.2021

[Kudo and Richardson 2018] Kudo, Taku; Richardson, John: SentencePiece: A
simple and language independent subword tokenizer and detokenizer for neural text
processing. In: Proceedings of the 2018 Conference on Empirical Methods in Natu-
ral Language Processing: System Demonstrations. Brussels, Belgium: Association
for Computational Linguistics, 2018, 66–71

[Lin 2004] Lin, Chin-Yew: ROUGE: A Package for Automatic Evaluation of Sum-
maries. In: Text Summarization Branches Out, Association for Computational
Linguistics, July 2004, 74-81

[Lin and Och 2004] Lin, Chin-Yew; Och, Franz J.: Automatic evaluation of machine
translation quality using longest common subsequence and skip-bigram statistics.
In: Proceedings of the 42nd Annual Meeting of the Association for Computational
Linguistics, Association for Computational Linguistics, 2004, 605–612

[Luong et al. 2015] Luong, Thang; Pham, Hieu; Manning, Christopher D.: Effec-
tive Approaches to Attention-based Neural Machine Translation. In: Proceedings of
the 2015 Conference on Empirical Methods in Natural Language Processing. Lisbon,
Portugal: Association for Computational Linguistics, September 2015, 1412–1421

[Mayhew et al. 2020] Mayhew, Stephen; Bicknell, Klinton; Brust, Chris; Mc-
Dowell, Bill; Monroe, Will; Settles, Burr: Simultaneous Translation and
Paraphrase for Language Education. In: Proceedings of the Fourth Workshop on
Neural Generation and Translation, Association for Computational Linguistics,
July 2020, 232–243

[McKinney 2010] McKinney, Wes: Data Structures for Statistical Computing in
Python. In: Walt Stéfan van d. (ed.); Millman Jarrod (ed.): Proceedings of the
9th Python in Science Conference, 2010, pages 56–61

[Mikolov et al. 2013] Mikolov, Tomas; Chen, Kai; Corrado, Greg; Dean, Jeffrey:
Efficient estimation of word representations in vector space. In: 1st International
Conference on Learning Representations, ICLR 2013 (2013), January. https:
//arxiv.org/abs/1301.3781

[Pan and Yang 2010] Pan, Sinno J.; Yang, Qiang: A Survey on Transfer Learn-
ing. In: IEEE Transactions on Knowledge and Data Engineering 22 (2010),

50

http://arxiv.org/abs/1904.09751
http://arxiv.org/abs/1904.09751
https://www.internetworldstats.com/stats7.htm
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781

Bibliography

no. 10, pages 1345–1359. http://dx.doi.org/10.1109/TKDE.2009.191. – DOI
10.1109/TKDE.2009.191

[Papineni et al. 2002] Papineni, Kishore; Roukos, Salim; Ward, Todd; Zhu, Wei-
Jing: BLEU: A Method for Automatic Evaluation of Machine Translation. In:
Proceedings of the 40th Annual Meeting on Association for Computational Linguis-
tics. USA: Association for Computational Linguistics, 2002, 311–318

[Paszke et al. 2019] Paszke, Adam; Gross, Sam; Massa, Francisco; Lerer,
Adam; Bradbury, James; Chanan, Gregory; Killeen, Trevor; Lin, Zem-
ing; Gimelshein, Natalia; Antiga, Luca; Desmaison, Alban; Kopf, An-
dreas; Yang, Edward; DeVito, Zachary; Raison, Martin; Tejani, Alykhan;
Chilamkurthy, Sasank; Steiner, Benoit; Fang, Lu; Bai, Junjie; Chin-
tala, Soumith: PyTorch: An Imperative Style, High-Performance Deep
Learning Library. 2019. http://papers.neurips.cc/paper/9015-pytorch-
an-imperative-style-high-performance-deep-learning-library.pdf. In:
Wallach, H. (ed.); Larochelle, H. (ed.); Beygelzimer, A. (ed.); Alché-
Buc, F. d'(ed.); Fox, E. (ed.); Garnett, R. (ed.): Advances in Neural Informa-
tion Processing Systems 32. Curran Associates, Inc., 2019, 8024–8035

[Pennington et al. 2014] Pennington, Jeffrey; Socher, Richard; Manning,
Christopher D.: GloVe: Global vectors for word representation. In: Proceed-
ings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP). Doha, Qatar: Association for Computational Linguistics, October 2014,
1532–1543

[Post 2018] Post, Matt: A Call for Clarity in Reporting BLEU Scores. In: Proceed-
ings of the Third Conference on Machine Translation: Research Papers. Brussels,
Belgium: Association for Computational Linguistics, October 2018, 186–191

[Raffel et al. 2020] Raffel, Colin; Shazeer, Noam; Roberts, Adam; Lee, Kather-
ine; Narang, Sharan; Matena, Michael; Zhou, Yanqi; Li, Wei; Liu, Peter J.:
Exploring the Limits of Transfer Learning with a Unified Text-to-Text Trans-
former. In: Journal of Machine Learning Research 21 (2020), no. 140, 1–67.
http://jmlr.org/papers/v21/20-074.html

[Ruder 2019] Ruder, Sebastian: Neural Transfer Learning for Natural Language
Processing. Galway, Ireland, National University of Ireland, PhD thesis, February
2019

[Ruder 2020] Ruder, Sebastian: Why You Should Do NLP Beyond English. http:
//ruder.io/nlp-beyond-english. 2020, Accessed: 06.07.2021

[Shazeer and Stern 2018] Shazeer, Noam; Stern, Mitchell: Adafactor: Adaptive
Learning Rates with Sublinear Memory Cost. (2018), April. http://arxiv.org/
abs/1804.04235

51

http://dx.doi.org/10.1109/TKDE.2009.191
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://jmlr.org/papers/v21/20-074.html
http://ruder.io/nlp-beyond-english
http://ruder.io/nlp-beyond-english
http://arxiv.org/abs/1804.04235
http://arxiv.org/abs/1804.04235

Bibliography

[Vaswani et al. 2017] Vaswani, Ashish; Shazeer, Noam; Parmar, Niki; Uszko-
reit, Jakob; Jones, Llion; Gomez, Aidan N.; Kaiser, undefinedukasz; Polo-
sukhin, Illia: Attention is All You Need. In: Proceedings of the 31st International
Conference on Neural Information Processing Systems. Long Beach, California,
USA: Curran Associates Inc., 2017. – ISBN 9781510860964, pages 6000–6010

[Vijayakumar et al. 2018] Vijayakumar, Ashwin K.; Cogswell, Michael; Sel-
varaju, Ramprasath R.; Sun, Qing; Lee, Stefan; Crandall, David; Batra,
Dhruv: Diverse Beam Search: Decoding Diverse Solutions from Neural Sequence
Models. (2018). https://arxiv.org/abs/1610.02424

[Wikipedia contributors 2021] Wikipedia contributors: List of Wikipedias —
Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/wiki/List_of_
Wikipedias. 2021, Accessed: 06.07.2021

[Wolf et al. 2020] Wolf, Thomas; Debut, Lysandre; Sanh, Victor; Chaumond,
Julien; Delangue, Clement; Moi, Anthony; Cistac, Pierric; Rault, Tim; Louf,
Rémi; Funtowicz, Morgan; Davison, Joe; Shleifer, Sam; Platen, Patrick
von; Ma, Clara; Jernite, Yacine; Plu, Julien; Xu, Canwen; Scao, Teven L.;
Gugger, Sylvain; Drame, Mariama; Lhoest, Quentin; Rush, Alexander M.:
Transformers: State-of-the-Art Natural Language Processing. In: Proceedings of
the 2020 Conference on Empirical Methods in Natural Language Processing: Sys-
tem Demonstrations. Online: Association for Computational Linguistics, October
2020, 38–45

[Wu et al. 2016] Wu, Yonghui; Schuster, Mike; Chen, Zhifeng; Le, Quoc V.;
Norouzi, Mohammad; Macherey, Wolfgang; Krikun, Maxim; Cao, Yuan;
Gao, Qin; Macherey, Klaus; Klingner, Jeff; Shah, Apurva; Johnson, Melvin;
Liu, Xiaobing; Kaiser Łukasz; Gouws, Stephan; Kato, Yoshikiyo; Kudo, Taku;
Kazawa, Hideto; Stevens, Keith; Kurian, George; Patil, Nishant; Wang, Wei;
Young, Cliff; Smith, Jason; Riesa, Jason; Rudnick, Alex; Vinyals, Oriol;
Corrado, Greg; Hughes, Macduff; Dean, Jeffrey: Google’s Neural Machine
Translation System: Bridging the Gap between Human and Machine Translation.
(2016). https://arxiv.org/abs/1609.08144

[Young 2015] Young, Holly: The digital language divide. http://labs.
theguardian.com/digital-language-divide/. 2015, Accessed: 06.07.2021

52

https://arxiv.org/abs/1610.02424
https://en.wikipedia.org/wiki/List_of_Wikipedias
https://en.wikipedia.org/wiki/List_of_Wikipedias
https://arxiv.org/abs/1609.08144
http://labs.theguardian.com/digital-language-divide/
http://labs.theguardian.com/digital-language-divide/

Ich versichere, die vorliegende Arbeit selbstständig ohne fremde Hilfe
verfasst und keine anderen Quellen und Hilfsmittel als die angegebe-
nen benutzt zu haben. Die aus anderen Werken wörtlich entnomme-
nen Stellen oder dem Sinn nach entlehnten Passagen sind durch
Quellenangaben eindeutig kenntlich gemacht.

Ort, Datum Melina Zanon

	Introduction
	Motivation
	Structure

	Foundations
	Neural Machine Translation
	Transfer Learning
	The Transformer Architecture
	Word Embeddings
	Multihead-Attention
	The Softmax Function

	T5 Text-to-text-transfer-transformer

	Data Set
	STAPLE Data Set
	German-English Data Set

	Methods
	Decoding Algorithms for Multiple Outputs
	Evaluation of Machine Translation

	Experiments
	Implementation
	Training

	Results
	Metrics
	Discussion

	Conclusion
	List of Figures
	List of Tables
	Bibliography

